

Timing and Design Closure in Physical Design Flows

Olivier Coudert
Monterey Design Systems
894 Ross Drive, Suite 100

Sunnyvale, CA 94089-1443

Introduction
A physical design flow consists of producing a production-
worthy layout from a gate-level netlist subject to a set of
constraints. This paper focuses on the problems imposed by
shrinking process technologies. It exposes the problems of
timing closure, signal integrity, design variable dependencies,
clock and power/ground routing, and design signoff. It also
surveys some physical design flows, and outlines a refinement-
based flow.

1. The Challenges of a Physical
Design Flow
Since the event of logic synthesis in the mid-80's, design flows
have been characterized by a clear separation between the
logical and the physical domains. Logic synthesis produces a
gate-level netlist from an abstract specification (behavioral or
RTL). Place and route produces the layout from the gate-level
netlist and technology files. Reconsidering the logical aspects
during the physical design phase was unnecessary, because
timing signoff could be done at the gate level, and signal
integrity was rarely an issue.
A flow consisting of logic synthesis followed by place-and-route
cannot work with deep submicron (DSM). At 0.18µm and
beyond, interconnect becomes a dominant factor and breaks the
dichotomy between the logical and physical domains.

1.1 Timing Closure
We can no longer neglect the impact of the interconnect on
timing: the gate delay depends mostly on the output capacitance
it drives, of which the net capacitance becomes the largest
contributor; also the delay of long nets, which depends on their
capacitance and resistance, becomes larger than gate delays.
Using a statistical wire load model (WLM) based on pin count to
estimate the interconnect delays does not work, because timing
is determined by the maximum path delay, and although a WLM
is a good predictor of the average wire load, the deviation is so
large that timing ends up to be grossly mispredicted.
Moreover, coupling capacitance (the capacitance between nets
on the same layer) becomes more dominant over inter-layer
capacitance (the capacitance due to overlapping of interconnect
between different layers) with every new process technology.
This is because the nets are getting much closer to each other
and the wire aspect ratio of height to width is increasing. In
2002, the coupling capacitance is more than four times larger
than the inter-layer capacitance, and the ratio is projected to
increase to six by 2010. This means that the capacitance of a net
cannot be determined without knowing both its route and that of
its neighbors.

1.2 Signal Integrity
Finer geometry, higher clock frequency, and lower voltage
produce signal integrity problems. For instance, since the inter-
wire coupling capacitance dominates the inter-layer capacitance,

crosstalk can no longer be neglected, because it has a primary
effect on timing and induces signal noise. Other physical aspects
such as antenna effect, electromigration, self-heating and IR
drop, need to be analyzed and controlled. The next technology
generation will need even more detailed analysis including
inductance of chip and packaging, on-chip decoupling,
resonance frequency analysis and soft error correction. Signal
integrity problems must be identified as early as possible since it
is very costly and time consuming, if not impossible, to fix them
during the final implementation stages.

1.3 Capacity
Designs keep getting bigger and more complex. Production
designs today contain tens of millions of gates. Two capacity
problems are emerging. The first is a pure scalability problem.
The raw number of objects that need to be managed and
processed is stressing the memory limit and computational
resources of currently available CPUs (only linear or n log n
algorithms can reasonably be applied to a complete netlist). The
second problem is the overall complexity of a chip design, which
is often divided in several logical and physical blocks, with
several independent design teams working in parallel at a
different pace. Few very large chips are actually designed flat:
the trend is towards more hierarchical designs.
Hierarchical flows pose new problems for physical design. For
example, how to handle timing constraints between the chip
level and the block level, how to verify the feasibility of the
constraints at the chip level, how to capture the chip context
when implementing a block, how to hierarchically verify the
chip, etc. Floorplanning is still a difficult problem, especially
when it must be done considering timing and congestion.

2. Survey of Current Flows
Some of the proposed solutions to solve the DSM challenges are
as follows.

2.1 Custom Wire Load Model
This flow iterates between gate-level synthesis and place-and-
route. After place-and-route, if the constraints are not met, the
netlist is back-annotated with the actual wire load and re-
synthesized. Signal integrity problems are usually handled at the
detailed routing level.
Place and route data are necessary to determine the timing.
Trying to compensate for the lack of these data by driving
synthesis with pessimistic assumptions results in over-design.
Extracting net capacitances after place and route and feeding
them back to synthesis in an attempt to seed synthesis with more
realistic capacitance estimations is not practical. This often
results in a different netlist, thus a different placement and
routing, thus different wire loads, thus a different timing. There
is no guarantee that this iterative process will converge.

2.2 Block-assembly flow
This flow is based on the idea that a statistical wireload model
can still be used for small blocks of logic. Blocks smaller than

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

50k cells have been proposed [33]. The netlist is divided into
blocks such that the intra-block interconnect delay can be
neglected or roughly estimated, which enables synthesis to
predict the overall delay. Then the blocks are assembled.
There are several problems here. First, this requires time
budgeting, and there is no scientific method to come up with an
accurate budgeting that can be met both at the block level and at
the chip level. This results in a sub-optimal or infeasible netlist.
Second, assembly must respect the physical boundaries of the
blocks, so that the intra-block delays are preserved, which can
overconstrain placement. Third, it is virtually impossible to
estimate the inter-block delays, since long interconnects depend
on the relative placement of the blocks. Fourth, statistical
wireload models may still fail to predict timing accurately, even
for small blocks, due to routing congestion. If routes in the block
are forced to meander in congested areas, the net capacitances
increase substantially. Since congestion impacts wireload model
predictability, the overall connectivity of the netlist must be
considered, which is no longer a local block-level property.

2.3 Constant Delay Synthesis Flow
The delay through a logic stage (i.e., a gate and the net it drives)
is expressed as a linear function of the gain, which is the ratio of
the capacitance driven by the gate to its input pin capacitance.
Fixing the delay consists of fixing the gain. A fixed delay (i.e.,
fixed gain) is assigned on every logical stage so that timing
constraints are met. Then these gains are preserved as the netlist
is placed and routed.
Constant delay synthesis is attractive because of its elegance and
simplicity, which enables fast synthesis. It has proven to be an
efficient solution for RTL-to-gate synthesis. However, this
elegance is obtained at the cost of ignoring the reality of physical
design aspects. Delay models must be input slope dependent and
distinguish between rising and falling signals. Such a simple
model cannot capture the propagation of a waveform in a net.
The gains can be kept constant by adapting the net capacitances
and the gate sizes within limited ranges. In practice, this means
that the netlist must be changed to accommodate the
placement/routing/timing constraints (e.g., re-buffering), which
means that delays must be re-assigned. Constant delay synthesis
assumes continuous sizing. Mapping the resulting solution onto
a real discrete library can result in a sub-optimal netlist. Also
constant delay synthesis assumes convex input pin capacitance,
which is often not true for real-life libraries.

2.4 Placement Aware Synthesis
This is a general trend, since synthesis needs placement
information to estimate the timing [26, 32]. But gluing synthesis
and placement together does not help if routing information is
not sufficient, or if the interaction between synthesis and
placement is not under control. For example, synthesis may
locally increase the area to fix a timing problem, thus creating an
overfilled area, to which placement will react by spreading gates
around, which will create new timing problems. Making this
flow converge is a major problem. Moreover, synthesis and
placement working together is clearly not sufficient if it does not
account for congestion and signal integrity issues, which require
an understanding of routing and physical aspects. In other words,
this approach does not go far enough in the integration of the
logical and physical domains.

3. Refinement-based Flow
Although physical design is often presented as a timing closure
problem, the reality is that all design variables need to be

considered together. Besides dealing with the traditional
timing/area/power triangle, we also need to address congestion,
clock tree synthesis, scan-chain reordering, signal integrity, etc.
The increasing dependency of the design quality on physical
effects (crosstalk being the most obvious) has to be managed.
A variable of a design in process is always estimated with some
uncertainty. For example, the timing of a design is fully known
only if the routes are fully known. If the design has only been
partially placed and routed, then the uncertainty on net
capacitances results in an even larger uncertainty on timing.
Experience shows that until sufficient information about the
placement is available, it is simply useless to do any kind of
meaningful timing optimization beyond simple wirelength
minimization.
Indeed, if we know the precision with which placement and
routing are determined, we can determine the parameters of the
design that can be estimated with enough accuracy to allow
some valuable optimization. As the precision of the placement
and routing is increased, new design parameters become
"visible" and can be optimized in turn. A refinement-based flow
builds the physical design step by step, by increasing the
resolution of every parameter simultaneously. At the beginning
of this process, there is only an approximate placement and
global routing, and the clock tree and power/ground network are
roughly estimated (their contributions to the congestion must be
accounted for as early as possible). At the end, there is a fully
detailed, placed and routed netlist, including the completed clock
tree and power/ground routing. Between these two points, there
is a continuous progression from rough to detailed, and all
design variables are monitored and optimized simultaneously
(when their resolution allows it) to meet the design constraints.
As the design implementation progresses, the models become
more accurate (the estimations have less uncertainty), and the
actions taken to solve the problems are more and more detailed
and localized. This continuous process of model refinement and
design variable monitoring and optimization is the key to
prediction and convergence.
There is a point in this refinement process where timing can be
predicted within 10% of the post-layout timing. This point is
called a physical prototype, and can be used for early design
signoff.

3.1 Placement
Quadratic placement is very fast and can handle large designs.
However, it aims at minimizing the squares of the wirelengths,
not the actual wirelengths. Net weighting can be used to
emphasize critical nets, but the criticality of a net may change as
the placement changes, and estimating the criticality of a net at
the top level, with very fuzzy placement information, is
problematic. Quadratic placement is not suitable for
simultaneous optimization of other aspects of physical design,
e.g., clock, crosstalk. However, because of its speed, it is often
used to seed a more sophisticated placement method.
Force directed placement is another analytical method. The
principle is to include, in the equations capturing the wirelength,
a term that penalizes for overlapping cells, so that a balance can
be established between minimizing the wirelength and yielding a
legal placement [10]. Various formulations of this principle can
be used, and it is usually solved by conjugate gradient iterations
or other convex programming techniques. It is slower than
quadratic placement, but gives significantly better results.
However, there is a limit to what can be expressed with an
analytical function, thus some costs are hard to capture, and the
tuning of the "repulsive" terms can be difficult.
Simulated annealing [31] is based on move-and-cost. A move
consists in moving an object from one location to another (it can

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

also be a swap, where two object locations are exchanged). A
move is evaluated and accepted if it improves the cost. A move
that degrades the cost is accepted with some probability that is
slowly decreased to zero. Accepting cost degrading moves
allows exploring larger solution spaces and avoiding local
minima. Simulated annealing can produce globally optimum
solutions, and it has a completely open cost function. However it
is an extremely slow process, limiting its application to small
sets of objects. Due to its optimality potential and speed limit, it
is used for end case placement only (detailed placement).
Bisection placement iterates min-cut balanced partitioning and
move-based placement. The netlist is partitioned in two sets of
similar area, with as few nets spanning the two sets as possible
[4]. Then cells are moved or swapped between partitions to
reduce the cost. When a local minimum is reached, each set is
partitioned and the same procedure is iterated. Quadrisection is
the same process except that partitioning creates four partitions
instead of two. Experience has shown that quadrisection
placement is better suited for 2D placement.
Moving one cell at a time is far too slow to process a real design.
A dramatic speedup is obtained by allowing groups of cells to be
moved together. This method is also known as multilevel
hypergraph partitioning [20]. A hierarchical tree of clusters of
cells is first built from the netlist. The top of the tree is made of
large clusters of cells, and the leaves of the tree are the
individual cells. The cluster tree is built so that connectivity is
reduced, area is balanced, and functional/physical hierarchical
constraints, if any, are satisfied. It can be derived from a mix of
balanced multi-way min-cut partitioning (top-down) and
topology driven netlist clustering (bottom-up). Then the clusters
are placed and moved in a four-way min-cut quadrisection, also
called bins. When a local minimum is reached, the netlist is re-
clustered, each partition is quadrisected, and the whole process is
iterated. This cluster move-based method with an open cost
function allows simultaneous optimization of all design aspects
(including timing, congestion, wirelength, and crosstalk), which
makes it a good candidate for a refinement-based flow.
At the beginning of this process, we have a rough placement in a
few bins. At the end, we have an accurate placement with a few
dozen cells per bin. Even there, the placement is still flexible
(i.e., cells have no precise xy coordinate yet). This is a major
advantage of refining the placement of objects in smaller and
smaller bins: the placement is flexible enough to accommodate
more or less disruptive netlist changes. One of the most
important applications is to accommodate netlist changes
performed by logic synthesis and optimization [16, 5]. Another
crucial application, in the context of complex chip designs, is to
accommodate ECO (Engineering Change Order) changes. Most
ECO's are still manual and consequently very local (e.g.,
changing/removing/adding a gate, disconnect and reconnect a
pin to a neighbor net). However, as the design complexity
increases, so does the level of abstraction used by the designer.
An ECO change at the RTL level can affect hundreds of cells.
An ECO at the behavioral level is even more disruptive. Having
several levels of placement resolution eases dramatically the
integration of disruptive ECOs.

3.2 Logic Optimization
The gate-level netlist is initially synthesized with no placement
information and, therefore, only with a crude estimation of
delays. Timing becomes meaningful when enough placement
information is available �unless one uses constant-delay
synthesis with a high degree of confidence--. Only at that
moment can the logic be revisited with a good understanding of
timing, as well as congestion and power.

Physical logic optimization consists of changing the netlist to
optimize physical aspects of a design (timing, area, power,
congestion, etc) in the context of place and route information. It
is significantly different from gate synthesis, since it has many
more parameters to consider, and must interact with the placer
and router.
The delay model accuracy must match the resolution of the
placement. The simplest delay metric is in terms of total net
capacitance. In this model, all fanouts of a net have the same
delay, since the net is approximated as an equipotential surface.
The model is valid as long as the metal resistance is negligible
with respect to the gate resistance. With shrinking features, the
metal resistance per unit of length increases, while the gate
output resistance decreases. Metal resistance cannot be ignored
for an increasing number of nets. A net must be seen as a RC
network with different delays at its fanouts. Elmore delay can be
used as a first approximation, but more detailed models are
required when metal resistance increases. Also an efficient
incremental static timing analyzer is needed, since many local
logic transformations may be needed and must be reflected at the
global level. The static timing analyzer must support multi-cycle
paths, false paths, transparent latches, and be crosstalk aware.
Logic optimization should not disrupt the netlist to a scale larger
than the placement resolution (i.e., the size of a bin) to ensure
that placement can accommodate the disruption. Thus, as
placement resolution increases, the logic optimization should
become less disruptive. At higher levels of quadrisection, the
placement is very flexible, and aggressive re-synthesis and
technology mapping can be used. At lower levels, only local
optimizations, (e.g., sizing and buffering, or very focused re-
synthesis), should be allowed. After detailed placement, only
restricted sizing and non-disruptive buffering can be applied.
Common physical logic synthesis and optimization techniques
are: (1) Load and driver strength optimization. This includes
gate sizing, buffering, pins swapping, gate cloning. (2) Timing
boundary shifting. This includes transparent latches (i.e., cycle
stealing), useful skew, and retiming. (3) Resynthesis and
technology remapping. (4) Redundancy-based optimization. (5)
Area and/or power recovery. Some new logic transformations
specific to physical design, such as synthesis of both the logic
and the interconnect, synthesis for congestion [8] or logic
optimization for signal integrity, are also emerging.

3.2.1 Sizing
The goal of gate sizing is to determine optimum sizes for the
gates so that the circuit meets the design constraints (slope,
setup, hold, max capacitance) with the least area/power cost. A
larger gate will have a higher drive strength (lower resistance)
and hence can charge/discharge output capacitances faster.
However, it usually also has a higher input capacitance. This
results in the preceding gate seeing a larger capacitive load and
thus suffering an increased delay. Sizing requires a careful
balancing of these conflicting effects, and an optimal solution
will require the coordination of the correct sizes of all the gates
along and off critical paths.
Analytical techniques exist for sizing in the continuous domain
(e.g., linear programming [3], polynomial [11], convex
programming [17, 30]), and various attempts have been made to
use these results with discrete sizes in a cell library based design
style [15, 2]. The theory of constant effort [27] and its more
usable approximation, constant delay [13], provide a way to
select cell sizes directly for each stage. For example, the optimal
delay on a fanout-free path is obtained by distributing the effort
evenly among the logical stages. This means that if the delay of
the whole path is fixed, then the delay of every stage must be
kept constant. Thus, cell sizes can be selected to match this

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

constraint by visiting all the gates in a topological order, starting
from the outputs.
Analytical techniques cannot always capture the most accurate
delay models (e.g., rising and falling delays). Also they assume
that the input pin capacitances of a gate can be expressed as a
smooth function (usually linear) of the gate's size (i.e., drive
strength). Unfortunately this assumption is often broken: input
pin capacitance does not always nicely correlate with gate size,
and sometimes it is not even a convex function.
Alternatively, discrete sizing can be done using global search
techniques [7]. These techniques attempt to reach a global
optimum through a sequence of local moves, i.e., single-gate
changes. While these are computationally expensive, they can
take advantage of very accurate delay models and are not limited
by assumptions needed for analytical techniques. Global search
techniques can enforce complex constraints by rejecting moves
that violate them (e.g., validity of the placement), and they can
simultaneously combine sizing with other local logic
optimizations (e.g., gate placement, buffering, pin swapping).
They have been shown to provide good results for discrete
libraries. They are particularly effective in the context of
physical design, since they can focus on small critical sections,
use the most accurate delay models (including interconnect
delay), and find a small sequence of moves that meets timing
constraints while maintaining the validity of the placement.

3.2.2 Buffering
Buffering serves multiple functions: (1) Long wires result in
signal attenuation (slope degradation). Buffers (or repeaters in
this context) are used to restore signal levels. (2) A chain of one
or more buffers can be used to increase the drive strength for a
gate that is driving a large load. (3) Buffers can be used to shield
a critical path from a high-load off-critical path. The buffer is
used to drive the off-critical path load so that the driver on the
critical path sees only the buffer's input pin capacitance in place
of the high load.
It is possible to come up with ad-hoc solutions for each of the
above cases. For example, repeaters can be added at fixed
wirelength intervals determined by the technology. However,
critical nets often need to be buffered to satisfy more than one of
the above requirements. Algorithmic solutions are preferred that
balance the attenuation, drive strength, and shielding
requirements. This problem is hopelessly NP-hard. Even the
problem of determining the best buffer tree for a given net,
ignoring the placement of the driver and the sink pins, has been
shown to be NP-hard [28]. An interesting solution exists for the
case when the topology of the buffer tree is fixed and the
potential buffer sites are fixed. This is the case when the global
route for the net is already determined and the buffer tree must
follow this route. A dynamic programming algorithm, using an
Elmore delay model for the interconnect, finds an optimal
solution in polynomial time [12]. Various attempts have been
made to overcome the two limitations of this algorithm; the fact
that the topology is already fixed, and that the Elmore delay
model does not accurately capture the resistive effects of DSM
technologies. The former is considered to be more of a problem,
since fixing the topology can severely limit the shielding
possibilities and lead to overall sub-optimal solutions.
What is needed is the ability to determine the net route as part of
the buffering solution. Some attempts have been made to
develop heuristic solutions [23, 29], including adding additional
degrees of freedom like wire and driver sizing. These techniques
give better solutions than the fixed topology approach, but it is
hard to say how optimal they are. Various constraints must be
handled when routing and buffering the net, like routing

blockages and restricted buffer locations due to placement
keepouts [34, 18].
Determining the optimal buffer tree for a given net is only one
part of the complete buffering problem. Given that buffering a
given net can change the constraints (required time/slack, load)
on the pins of another net, the final solution is sensitive to the
order in which the nets are visited. In addition, once a net is
buffered, the gates may no longer be optimally sized. Resizing
gates before the next net is buffered can modify the buffering
problem. Researchers have considered combining sizing and
buffering into a single step [19], but this problem is very
complex and far from being considered solved.

3.2.3 Resynthesis and Remapping
Technology mapping attempts to find the best selection of cells
from a given cell library to meet a given delay constraint with
the least area/power [14]. In the context of physical synthesis,
the challenge is to work on sections small enough to not
significantly disturb the placement, yet significant enough to
improve the design. Another problem is to determine where to
place the new cells created during the remapping phase [22].
Some simple solutions based on fixed boundary locations can be
used during the mapping itself, with a clean-up step to make the
placement legal [24].
Logic restructuring, which consists of resynthesizing some logic
from scratch, is the most aggressive logic optimization, but it
can significantly change the structure of the netlist. This also
makes it the most difficult to apply in a physical design flow
where the changes are expected to be small to maintain the
validity of the placement. However, the basic ideas in
restructuring can still be used to improve the timing and
congestion properties of the netlist as long as the changes are
focused on key sections and the modifications are within the
space of acceptable changes (e.g., the changes do not violate
capacity/congestion constraints for various physical regions of
the design).
Timing driven logic resynthesis based on arrival times of critical
signals can be used (the basic idea is using late signals as close
to the outputs as possible). However, it is also desirable to keep
together signals that are physically close to each other. This
means that in addition to its arrival time, the location of a signal
must be taken into account as the Boolean function is
synthesized.

3.3 Clock Tree Synthesis
In the traditional flow, clock tree is a separate task. Typically, it
is built once the locations of the sequential elements and gated
clocks are known, i.e., after placement. But synthesizing clock
trees after placement creates routing problems that occur too late
to be fixed.
Clock tree synthesis must be part of the refinement process,
because it contributes significantly to congestion and power
dissipation, as well as timing using useful skew. Note that
targeting a zero-skew clock tree has no justification but
historical. First, skew can be used to optimize the timing.
Second, a zero-skew clock tree means that all the sequential
elements will toggle at the same time, which produces a peak
power that is not desirable. After some level of quadrisection,
the distribution of the sequential elements and gated clocks in
the bins will not change substantially. At that level one can
determine the amount of routing and buffers needed to carry the
clock signal, and the trunk of the clock tree can be built. From
that point, these resources are accounted for by placement for
congestion. As the partition size decreases and the detail
increases, the clock tree is refined and its resources are updated.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

This avoids a congestion surprise at the end and gives tight
control over clock skew requirements, since the placement is
flexible enough so that clock pins with common skew can be
grouped together. It also allows a fine control of the skew for
timing optimization, since the critical paths are continuously
monitored.
Note that the scan chain can be similarly refined, un-stitched and
re-stitched to accommodate the placement of sequential elements
and to minimize the congestion while still meeting the scan
ordering constraints.

3.4 Power/Ground Routing
The power/ground network can have a huge impact on
congestion. For that reason, it must be put in place as early as
possible so that its contribution to congestion is accounted for.
Initially, power routing is performed according to a user-defined
routing topology (e.g., chip ring, power grid). At some level of
the quadrisection, IR drop analysis can be done to check the
reliability of the power/ground network. This allows an accurate
assessment of the quality and integrity of the power routing
because the power rail currents will not change much as the
placement is further refined.
Power consumption depends on net capacitances and toggle
rates (number of transitions on a net per unit of time). The
switching activity can obtained by an external simulation (e.g.,
VCD file), or be computed on-the-fly using simulation (slow,
but accurate) or by probabilistic analysis (fast, but sometime
misleading). Knowing the distribution of the current sources in
the bins, one can extract a power network that is simulated to
produces an IR drop map. This helps in adjusting the power grid
since placement is still flexible enough at that stage to
accommodate adding and/or widening power stripes.

3.5 Crosstalk
Fixing crosstalk post-layout is a costly process and may not
converge, so crosstalk needs to be addressed as early as possible
in the flow. The router can be constrained to avoid crosstalk
effects in the first place (e.g., setting a maximum length of
parallel routing between any pair of nets). However, this method
is based on empirical data and does not reflect the physics of
crosstalk, which must include signal-switching window
dependency. The router ends up over-constrained, leading to
irresolvable congestion problems.
There have been attempts at implementing crosstalk avoidance
during placement and global routing. The idea is that even if
detailed routing is not available, the signal switching windows
can be used statistically to identify the potential problem nets.
The problem nets are given more white space during global
routing so that the detailed routing has enough resources to
perform spacing, shielding, or re-routing and automatically fix
crosstalk problems. This requires the detailed router to have
gridless capabilities with variable width and variable spacing so
that crosstalk issues can be addressed effectively.

3.6 IR Drop
IR Drop is the problem of voltage drop on the power and ground
due to high current flowing through the power/ground resistive
network. When the voltage drop (or rise in the ground net)
becomes excessive, this causes delays in gates, which can
produce timing violations. If severe enough, IR drop may also
cause unreliable operation because of reduced noise margins.
IR drop becomes more critical for DSM designs because: (1)
there are more devices, thus there is a higher current demand; (2)
the wire and contact/via resistance of the supply network

increases because of narrower wires and fewer contacts/vias; (3)
the supply voltage is decreased to 1.5 volts and below; (4) noise
margins scale as well. As an example, the delay increase
produced by a 0.15V drop through a typical inverter at 0.18µm is
10%, and is more than 60% for a 0.5V drop.
For many designs today, IR drop is being addressed by over-
designing the power network with wide power buses and
multiple power meshes. However, this severely reduces the
available routing resource and is likely to cause routing
congestion problems.
An accurate IR drop analysis is done with a transistor level
simulation that computes the dynamic current flows. This is a
costly process that takes far too long to perform for a complete
chip. Fortunately, the simulation can be done at the cell level
using cell-level power models, an RC model for the
interconnect, and data on switching direction and frequency.
This produces average current per cell, from which the average
voltage drop can be approximated using a resistance model of
the power and ground network. Although less accurate, this
method can identify regions with voltage drops high enough to
be significant.
When the level of quadrisection is fine enough, the interconnect
loading can be obtained accurately while the placement has
enough flexibility to accommodate the power routing change.
Optimizing the power routing for both IR drop and congestion
can be done at that level. The currents of the cells in a bin are
accumulated and represented as a single current source to the
power grid. A fast simulation is then used to evaluate the voltage
drop so that the power network can be adjusted accordingly.
Power stripes can be narrowed or suppressed to free some
routing resources, or widened and augmented to meet the IR
drop specification.

3.7 Electromigration
When there is too much current density through the interconnect
for an extended period of time, its resistance increases. This
results in self-heating and metal disintegration, which eventually
causes an open or short in the circuit. This effect is called
electromigration (EM). It becomes more severe with the advent
of DSM. As circuits get faster and bigger, more currents flow
through the interconnects, which at the same time are getting
narrower with every new generation. The current density (the
amount of current flowing per unit area) increases super-linearly
with every new DSM generation. It is no longer feasible for
manufacturing to provide enough cross-section area on the
interconnects to guarantee net integrity at all line widths.
EM has traditionally been addressed by over-designing with
wide power buses, which is where most of the EM issues are
expected. As explained above, however, over-designing the
power network is costly in terms of routing resources. Also,
electromigration effects have become important for clock trees,
and will affect signal nets in the future. For clock and signal
nets, there may not be enough contacts/vias to sustain the current
through the interconnect. A solution that provides sufficient
interconnect width without excessive over-design is necessary.
Tools that compute current densities from the final layout are
often used to analyze EM problems, which are then fixed
manually by widening the problem nets. However, this requires
considerable expertise and time, and the extra space necessary
for widening the nets may not be available.
It is possible to address EM much earlier in the design flow, by
calculating the required width of the interconnect as placement
and routing are refined. Once the placement is accurate enough
for a good estimation of the net capacitances, the current flow in
these nets can be calculated, which, together with the switching

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

activity of the nets, enables electromigration analysis. The
interconnect width and via count needed to support the current
are identified at each level of quadrisection. This drives the
routing resources allocated by the global router. Consequently,
the detailed router will be able to satisfy the electromigration
routing requirements together with other requirements.

3.8 Routing
One of the most important requirements to achieve good routing
is the correlation between the global and detailed routers. The
detailed router must finalize what the global router predicted,
and the routing resources allocated by the global router must
actually be available to the detailed router. It is unrealistic to use
two uncoupled global and detailed routers, since congestion is a
dominant factor in DSM design.
The global router must be timing, congestion and crosstalk
driven, and support multiple widths and spacing. The detailed
router should support both gridded (for speed) and gridless (for
detailed optimization) modes. It must support variable wire
width (e.g., for delay optimization). It must enforce numerous
DSM routing rules (e.g., metal/via antenna, end-of-line,
minimum area, via array generation for fat-wire connections,
variable spacing based on width, etc). Also it must have timing,
congestion, crosstalk, and electromigration awareness at all
times (e.g. during layer assignment and wire sizing).

Conclusion
With every process generation, there are more transistors, higher
clock frequencies, and additional physical effects to consider.
This paper discussed the challenges that need to be addressed
during physical implementation in the creation of a production
worthy GDSII. A flow based on placement and routing
refinement (including clock tree, power routing, and scan chain)
with an open cost function, together with physical logic
synthesis and optimization, can meet these challenges. It enables
early estimation of congestion, timing, and physical effects at a
point in the flow when the design has enough flexibility to
accommodate perturbations produced by the optimization
procedures. The physical prototype produced by the refinement-
based flow restores the design signoff solution lost in the mid-
90�s.
The interconnect centric DSM era raises new issues, where
placement, routing, and logic optimization are tightly
interdependent. Further, the introduction of hierarchy to handle
multi-million gate designs requires new full-chip design system.

References
[1] R. Arunachalam, K. Rajagopal, L. Pileggi, "TACO: Timing
Analysis with Coupling", Proc. of ICCAD'2000, Nov. 2000.
[2] F. Beeftink, P. Kudva, D. Kung, L. Stok, "Gate-Size
Selection for Standard Cell Libraries", ICCAD'98, Nov. 1998.
[3] M. Berkelaar, J. Jess, "Gate Sizing in MOS Digital Circuits
with Linear Programming", Proc. of EDAC'90, 1990.
[4] M. A. Breuer, "A Class of Min-cut Placement Algorithms",
Proc. of 14th DAC, pp. 284-290, 1977.
[5] R. Carragher, R. Murgai, S. Chakraborty, M. Prasad, A.
Srivastava, N. Vemuri, "Layout-driven Logic Optimization", in
Proc. of IWLS'2000, pp. 270-276, May 2000.
[7] O. Coudert, "Gate Sizing for Constrained Delay/Power/Area
Optimization", in IEEE Trans. on VLSI Systems, Special Issue
on Low Power Electronics and Design, pp. 465-472, Dec. 1997.
[8] O. Coudert, A. Narayan, �Subsystem: Logic Optimization�,
Tech. Report, Monterey Design Systems, Sept. 1998.

[10] H. Eisenmann, F. M. Johannes, "Generic Global Placement
and Floorplanning", in Proc. of 35th DAC, June 1998.
[11] J. P. Fishburn, A. E. Dunlop, "TILOS: a Posynomial
Programming Approach to Transistor Sizing", ICCAD'85, pp.
326-328, Nov. 1985.
[12] L. P. P. P. van Ginneken, "Buffer placement in distributed
RC-tree networks for minimal Elmore delay", ISCAS'90, 1990.
[13] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, Y.
Watanabe, "A Delay Model for Logic Synthesis of
Continuously-Sized Networks", ICCAD' 95, Nov. 1995.
[14] G. D. Hachtel, F. Somenzi, "Logic Synthesis and
Verification Algorithms", Kluwer Academic Pub., 1996.
[15] R. Haddad, L. P. P. P. van Ginneken, N. Shenoy, "Discrete
drive selection for continuous sizing", ICCD'97, 1997.
[16] S. Hojat, P. Villarubia, "An Integrated Placement and
Synthesis Approach for Timing Closure of PowerPC
Microporcessor", in ICCD'97, pp. 206-210, Sept. 1997.
[17] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel,
"Optimization of High-Speed CMOS Logic Circuits with
Analytical Models for Signal Delay, Chip Area and Dynamic
Power Dissipation", in IEEE Trans. on CAD, March 1990.
[18] J. Hu, S. S. Sapatnekar, "Simultaneous Buffer Insertion and
Non-Hanan Optimization for VLSI Interconnect under a Higher
Order AWE Model", ISPD'99, 1999.
[19] Y. Jiang, S. S. Sapatnekar, C. Bamji, J. Kim, "Interleaving
Buffer Insertion and Transistor Sizing into a Single
Optimization", IEEE Trans. on VLSI, Dec. 1998.
[20] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar,
"Multilevel Hypergraph Partitioning: Application in VLSI
Domain", in Proc. of 34th DAC, pp. 526-529, June 1997.
[22] J. Lou, A. Salek, M. Pedram, "An Exact Solution to
Simultaneous Technology Mapping and Linear Placement
Problem", ICCAD'97, pp. 671-675, Nov. 1997.
[23] T. Okamoto, J. Cong, "Interconnect Layout Optimization by
Simultaneous Steiner Tree Construction and Buffer Insertion",
ISPD'96, 1996.
[24] M. Pedram, N. Bhat, "Layout driven technology mapping",
28th DAC, June 1991.
[26] N. Shenoy, M. Iyer, R. Damiano, K. Harer, H.-K. Ma, P.
Thilking, "A Robust Solution to the Timing Convergence
Problem in High Performance Designs", ICCD'99, Oct. 1999.
[27] R. F. Sproull, I. E. Sutherland, "Logical Effort: Designing
for Speed on the Back of an Envelope", in Proc. of IEEE
Advanced Research in VLSI Conference", 1991.
[28] H. J. Touati, "Performance Oriented Technology Mapping",
UCB Ph.D. Thesis, 1990.
[29] A. Salek, J. Lou, M. Pedram, " A simultaneous routing tree
construction and fanout optimization algorithm", ICCAD'98,
1998.
[30] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, S. M. Kang, "An
Exact Solution to the Transistor Sizing Problem for CMOS
Circuits Using Convex Optimization", IEEE Trans. on CAD, pp.
1621-1634, Dec. 1993.
[31] C. Sechen, "VLSI Placement and Global Routing Using
Simulated Annealing", Kluwer Pub., Deventer, Netherlands,
1988.
[32] G. Stenz, B.M. Reiss, B.Rohfleisch, F.M. Johannes,
"Timing Driven Placement in Interaction with Netlist
Transformations", in Proc. of ISPD'97, pp. 36-41, 1997.
[33] D. Sylvester, K. Keutzer, "Getting to the Bottom of Deep
Submicron", in Proc. of ICCAD'98, Nov. 1998.
[34] H. Zhou, M. Wong, I-M. Liu, A. Aziz, "Simultaneous
Routing and Buffer Insertion with Restrictions on Buffer
Locations", 36th DAC, June 1999.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

