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Introduction 
A physical design flow consists of producing a production-
worthy layout from a gate-level netlist subject to a set of 
constraints. This paper focuses on the problems imposed by 
shrinking process technologies. It exposes the problems of 
timing closure, signal integrity, design variable dependencies, 
clock and power/ground routing, and design signoff. It also 
surveys some physical design flows, and outlines a refinement-
based flow.  

1. The Challenges of a Physical 
Design Flow 
Since the event of logic synthesis in the mid-80's, design flows 
have been characterized by a clear separation between the 
logical and the physical domains. Logic synthesis produces a 
gate-level netlist from an abstract specification (behavioral or 
RTL). Place and route produces the layout from the gate-level 
netlist and technology files. Reconsidering the logical aspects 
during the physical design phase was unnecessary, because 
timing signoff could be done at the gate level, and signal 
integrity was rarely an issue. 
A flow consisting of logic synthesis followed by place-and-route 
cannot work with deep submicron (DSM). At 0.18µm and 
beyond, interconnect becomes a dominant factor and breaks the 
dichotomy between the logical and physical domains.  

1.1 Timing Closure 
We can no longer neglect the impact of the interconnect on 
timing: the gate delay depends mostly on the output capacitance 
it drives, of which the net capacitance becomes the largest 
contributor; also the delay of long nets, which depends on their 
capacitance and resistance, becomes larger than gate delays.  
Using a statistical wire load model (WLM) based on pin count to 
estimate the interconnect delays does not work, because timing 
is determined by the maximum path delay, and although a WLM 
is a good predictor of the average wire load, the deviation is so 
large that timing ends up to be grossly mispredicted. 
Moreover, coupling capacitance (the capacitance between nets 
on the same layer) becomes more dominant over inter-layer 
capacitance (the capacitance due to overlapping of interconnect 
between different layers) with every new process technology. 
This is because the nets are getting much closer to each other 
and the wire aspect ratio of height to width is increasing. In 
2002, the coupling capacitance is more than four times larger 
than the inter-layer capacitance, and the ratio is projected to 
increase to six by 2010. This means that the capacitance of a net 
cannot be determined without knowing both its route and that of 
its neighbors. 

1.2 Signal Integrity 
Finer geometry, higher clock frequency, and lower voltage 
produce signal integrity problems. For instance, since the inter-
wire coupling capacitance dominates the inter-layer capacitance, 

crosstalk can no longer be neglected, because it has a primary 
effect on timing and induces signal noise. Other physical aspects 
such as antenna effect, electromigration, self-heating and IR 
drop, need to be analyzed and controlled. The next technology 
generation will need even more detailed analysis including 
inductance of chip and packaging, on-chip decoupling, 
resonance frequency analysis and soft error correction. Signal 
integrity problems must be identified as early as possible since it 
is very costly and time consuming, if not impossible, to fix them 
during the final implementation stages. 

1.3 Capacity 
Designs keep getting bigger and more complex. Production 
designs today contain tens of millions of gates. Two capacity 
problems are emerging. The first is a pure scalability problem. 
The raw number of objects that need to be managed and 
processed is stressing the memory limit and computational 
resources of currently available CPUs (only linear or n log n 
algorithms can reasonably be applied to a complete netlist). The 
second problem is the overall complexity of a chip design, which 
is often divided in several logical and physical blocks, with 
several independent design teams working in parallel at a 
different pace. Few very large chips are actually designed flat: 
the trend is towards more hierarchical designs. 
Hierarchical flows pose new problems for physical design. For 
example, how to handle timing constraints between the chip 
level and the block level, how to verify the feasibility of the 
constraints at the chip level, how to capture the chip context 
when implementing a block, how to hierarchically verify the 
chip, etc. Floorplanning is still a difficult problem, especially 
when it must be done considering timing and congestion.  

2. Survey of Current Flows 
Some of the proposed solutions to solve the DSM challenges are 
as follows. 

2.1 Custom Wire Load Model 
This flow iterates between gate-level synthesis and place-and-
route. After place-and-route, if the constraints are not met, the 
netlist is back-annotated with the actual wire load and re-
synthesized. Signal integrity problems are usually handled at the 
detailed routing level. 
Place and route data are necessary to determine the timing. 
Trying to compensate for the lack of these data by driving 
synthesis with pessimistic assumptions results in over-design. 
Extracting net capacitances after place and route and feeding 
them back to synthesis in an attempt to seed synthesis with more 
realistic capacitance estimations is not practical. This often 
results in a different netlist, thus a different placement and 
routing, thus different wire loads, thus a different timing. There 
is no guarantee that this iterative process will converge. 

2.2 Block-assembly flow  
This flow is based on the idea that a statistical wireload model 
can still be used for small blocks of logic. Blocks smaller than 
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50k cells have been proposed [33]. The netlist is divided into 
blocks such that the intra-block interconnect delay can be 
neglected or roughly estimated, which enables synthesis to 
predict the overall delay. Then the blocks are assembled. 
There are several problems here. First, this requires time 
budgeting, and there is no scientific method to come up with an 
accurate budgeting that can be met both at the block level and at 
the chip level. This results in a sub-optimal or infeasible netlist. 
Second, assembly must respect the physical boundaries of the 
blocks, so that the intra-block delays are preserved, which can 
overconstrain placement. Third, it is virtually impossible to 
estimate the inter-block delays, since long interconnects depend 
on the relative placement of the blocks. Fourth, statistical 
wireload models may still fail to predict timing accurately, even 
for small blocks, due to routing congestion. If routes in the block 
are forced to meander in congested areas, the net capacitances 
increase substantially. Since congestion impacts wireload model 
predictability, the overall connectivity of the netlist must be 
considered, which is no longer a local block-level property. 

2.3 Constant Delay Synthesis Flow 
The delay through a logic stage (i.e., a gate and the net it drives) 
is expressed as a linear function of the gain, which is the ratio of 
the capacitance driven by the gate to its input pin capacitance. 
Fixing the delay consists of fixing the gain. A fixed delay (i.e., 
fixed gain) is assigned on every logical stage so that timing 
constraints are met. Then these gains are preserved as the netlist 
is placed and routed. 
Constant delay synthesis is attractive because of its elegance and 
simplicity, which enables fast synthesis. It has proven to be an 
efficient solution for RTL-to-gate synthesis. However, this 
elegance is obtained at the cost of ignoring the reality of physical 
design aspects. Delay models must be input slope dependent and 
distinguish between rising and falling signals. Such a simple 
model cannot capture the propagation of a waveform in a net. 
The gains can be kept constant by adapting the net capacitances 
and the gate sizes within limited ranges. In practice, this means 
that the netlist must be changed to accommodate the 
placement/routing/timing constraints (e.g., re-buffering), which 
means that delays must be re-assigned. Constant delay synthesis 
assumes continuous sizing. Mapping the resulting solution onto 
a real discrete library can result in a sub-optimal netlist. Also 
constant delay synthesis assumes convex input pin capacitance, 
which is often not true for real-life libraries.  

2.4 Placement Aware Synthesis 
This is a general trend, since synthesis needs placement 
information to estimate the timing [26, 32]. But gluing synthesis 
and placement together does not help if routing information is 
not sufficient, or if the interaction between synthesis and 
placement is not under control. For example, synthesis may 
locally increase the area to fix a timing problem, thus creating an 
overfilled area, to which placement will react by spreading gates 
around, which will create new timing problems. Making this 
flow converge is a major problem. Moreover, synthesis and 
placement working together is clearly not sufficient if it does not 
account for congestion and signal integrity issues, which require 
an understanding of routing and physical aspects. In other words, 
this approach does not go far enough in the integration of the 
logical and physical domains. 

3. Refinement-based Flow 
Although physical design is often presented as a timing closure 
problem, the reality is that all design variables need to be 

considered together. Besides dealing with the traditional 
timing/area/power triangle, we also need to address congestion, 
clock tree synthesis, scan-chain reordering, signal integrity, etc. 
The increasing dependency of the design quality on physical 
effects (crosstalk being the most obvious) has to be managed.  
A variable of a design in process is always estimated with some 
uncertainty. For example, the timing of a design is fully known 
only if the routes are fully known. If the design has only been 
partially placed and routed, then the uncertainty on net 
capacitances results in an even larger uncertainty on timing. 
Experience shows that until sufficient information about the 
placement is available, it is simply useless to do any kind of 
meaningful timing optimization beyond simple wirelength 
minimization.  
Indeed, if we know the precision with which placement and 
routing are determined, we can determine the parameters of the 
design that can be estimated with enough accuracy to allow 
some valuable optimization. As the precision of the placement 
and routing is increased, new design parameters become 
"visible" and can be optimized in turn. A refinement-based flow 
builds the physical design step by step, by increasing the 
resolution of every parameter simultaneously. At the beginning 
of this process, there is only an approximate placement and 
global routing, and the clock tree and power/ground network are 
roughly estimated (their contributions to the congestion must be 
accounted for as early as possible). At the end, there is a fully 
detailed, placed and routed netlist, including the completed clock 
tree and power/ground routing. Between these two points, there 
is a continuous progression from rough to detailed, and all 
design variables are monitored and optimized simultaneously 
(when their resolution allows it) to meet the design constraints. 
As the design implementation progresses, the models become 
more accurate (the estimations have less uncertainty), and the 
actions taken to solve the problems are more and more detailed 
and localized. This continuous process of model refinement and 
design variable monitoring and optimization is the key to 
prediction and convergence. 
There is a point in this refinement process where timing can be 
predicted within 10% of the post-layout timing.  This point is 
called a physical prototype, and can be used for early design 
signoff.   

3.1 Placement 
Quadratic placement is very fast and can handle large designs. 
However, it aims at minimizing the squares of the wirelengths, 
not the actual wirelengths. Net weighting can be used to 
emphasize critical nets, but the criticality of a net may change as 
the placement changes, and estimating the criticality of a net at 
the top level, with very fuzzy placement information, is 
problematic. Quadratic placement is not suitable for 
simultaneous optimization of other aspects of physical design, 
e.g., clock, crosstalk. However, because of its speed, it is often 
used to seed a more sophisticated placement method. 
Force directed placement is another analytical method. The 
principle is to include, in the equations capturing the wirelength, 
a term that penalizes for overlapping cells, so that a balance can 
be established between minimizing the wirelength and yielding a 
legal placement [10]. Various formulations of this principle can 
be used, and it is usually solved by conjugate gradient iterations 
or other convex programming techniques. It is slower than 
quadratic placement, but gives significantly better results. 
However, there is a limit to what can be expressed with an 
analytical function, thus some costs are hard to capture, and the 
tuning of the "repulsive" terms can be difficult. 
Simulated annealing [31] is based on move-and-cost. A move 
consists in moving an object from one location to another (it can 
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also be a swap, where two object locations are exchanged). A 
move is evaluated and accepted if it improves the cost. A move 
that degrades the cost is accepted with some probability that is 
slowly decreased to zero. Accepting cost degrading moves 
allows exploring larger solution spaces and avoiding local 
minima. Simulated annealing can produce globally optimum 
solutions, and it has a completely open cost function. However it 
is an extremely slow process, limiting its application to small 
sets of objects. Due to its optimality potential and speed limit, it 
is used for end case placement only (detailed placement). 
Bisection placement iterates min-cut balanced partitioning and 
move-based placement. The netlist is partitioned in two sets of 
similar area, with as few nets spanning the two sets as possible 
[4]. Then cells are moved or swapped between partitions to 
reduce the cost. When a local minimum is reached, each set is 
partitioned and the same procedure is iterated. Quadrisection is 
the same process except that partitioning creates four partitions 
instead of two. Experience has shown that quadrisection 
placement is better suited for 2D placement. 
Moving one cell at a time is far too slow to process a real design. 
A dramatic speedup is obtained by allowing groups of cells to be 
moved together. This method is also known as multilevel 
hypergraph partitioning [20]. A hierarchical tree of clusters of 
cells is first built from the netlist. The top of the tree is made of 
large clusters of cells, and the leaves of the tree are the 
individual cells. The cluster tree is built so that connectivity is 
reduced, area is balanced, and functional/physical hierarchical 
constraints, if any, are satisfied. It can be derived from a mix of 
balanced multi-way min-cut partitioning (top-down) and 
topology driven netlist clustering (bottom-up). Then the clusters 
are placed and moved in a four-way min-cut quadrisection, also 
called bins. When a local minimum is reached, the netlist is re-
clustered, each partition is quadrisected, and the whole process is 
iterated. This cluster move-based method with an open cost 
function allows simultaneous optimization of all design aspects 
(including timing, congestion, wirelength, and crosstalk), which 
makes it a good candidate for a refinement-based flow.  
At the beginning of this process, we have a rough placement in a 
few bins. At the end, we have an accurate placement with a few 
dozen cells per bin. Even there, the placement is still flexible 
(i.e., cells have no precise xy coordinate yet). This is a major 
advantage of refining the placement of objects in smaller and 
smaller bins: the placement is flexible enough to accommodate 
more or less disruptive netlist changes. One of the most 
important applications is to accommodate netlist changes 
performed by logic synthesis and optimization [16, 5]. Another 
crucial application, in the context of complex chip designs, is to 
accommodate ECO (Engineering Change Order) changes. Most 
ECO's are still manual and consequently very local (e.g., 
changing/removing/adding a gate, disconnect and reconnect a 
pin to a neighbor net). However, as the design complexity 
increases, so does the level of abstraction used by the designer. 
An ECO change at the RTL level can affect hundreds of cells. 
An ECO at the behavioral level is even more disruptive. Having 
several levels of placement resolution eases dramatically the 
integration of disruptive ECOs. 

3.2 Logic Optimization 
The gate-level netlist is initially synthesized with no placement 
information and, therefore, only with a crude estimation of 
delays. Timing becomes meaningful when enough placement 
information is available �unless one uses constant-delay 
synthesis with a high degree of confidence--. Only at that 
moment can the logic be revisited with a good understanding of 
timing, as well as congestion and power. 

Physical logic optimization consists of changing the netlist to 
optimize physical aspects of a design (timing, area, power, 
congestion, etc) in the context of place and route information. It 
is significantly different from gate synthesis, since it has many 
more parameters to consider, and must interact with the placer 
and router. 
The delay model accuracy must match the resolution of the 
placement. The simplest delay metric is in terms of total net 
capacitance. In this model, all fanouts of a net have the same 
delay, since the net is approximated as an equipotential surface. 
The model is valid as long as the metal resistance is negligible 
with respect to the gate resistance. With shrinking features, the 
metal resistance per unit of length increases, while the gate 
output resistance decreases. Metal resistance cannot be ignored 
for an increasing number of nets. A net must be seen as a RC 
network with different delays at its fanouts. Elmore delay can be 
used as a first approximation, but more detailed models are 
required when metal resistance increases. Also an efficient 
incremental static timing analyzer is needed, since many local 
logic transformations may be needed and must be reflected at the 
global level. The static timing analyzer must support multi-cycle 
paths, false paths, transparent latches, and be crosstalk aware. 
Logic optimization should not disrupt the netlist to a scale larger 
than the placement resolution (i.e., the size of a bin) to ensure 
that placement can accommodate the disruption. Thus, as 
placement resolution increases, the logic optimization should 
become less disruptive. At higher levels of quadrisection, the 
placement is very flexible, and aggressive re-synthesis and 
technology mapping can be used. At lower levels, only local 
optimizations, (e.g., sizing and buffering, or very focused re-
synthesis), should be allowed. After detailed placement, only 
restricted sizing and non-disruptive buffering can be applied. 
Common physical logic synthesis and optimization techniques 
are: (1) Load and driver strength optimization. This includes 
gate sizing, buffering, pins swapping, gate cloning. (2) Timing 
boundary shifting. This includes transparent latches (i.e., cycle 
stealing), useful skew, and retiming. (3) Resynthesis and 
technology remapping. (4) Redundancy-based optimization. (5) 
Area and/or power recovery. Some new logic transformations 
specific to physical design, such as synthesis of both the logic 
and the interconnect, synthesis for congestion [8] or logic 
optimization for signal integrity, are also emerging.  

3.2.1 Sizing 
The goal of gate sizing is to determine optimum sizes for the 
gates so that the circuit meets the design constraints (slope, 
setup, hold, max capacitance) with the least area/power cost. A 
larger gate will have a higher drive strength (lower resistance) 
and hence can charge/discharge output capacitances faster. 
However, it usually also has a higher input capacitance. This 
results in the preceding gate seeing a larger capacitive load and 
thus suffering an increased delay. Sizing requires a careful 
balancing of these conflicting effects, and an optimal solution 
will require the coordination of the correct sizes of all the gates 
along and off critical paths. 
Analytical techniques exist for sizing in the continuous domain 
(e.g., linear programming [3], polynomial [11], convex 
programming [17, 30]), and various attempts have been made to 
use these results with discrete sizes in a cell library based design 
style [15, 2]. The theory of constant effort [27] and its more 
usable approximation, constant delay [13], provide a way to 
select cell sizes directly for each stage. For example, the optimal 
delay on a fanout-free path is obtained by distributing the effort 
evenly among the logical stages. This means that if the delay of 
the whole path is fixed, then the delay of every stage must be 
kept constant. Thus, cell sizes can be selected to match this 
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constraint by visiting all the gates in a topological order, starting 
from the outputs.  
Analytical techniques cannot always capture the most accurate 
delay models (e.g., rising and falling delays). Also they assume 
that the input pin capacitances of a gate can be expressed as a 
smooth function (usually linear) of the gate's size (i.e., drive 
strength). Unfortunately this assumption is often broken: input 
pin capacitance does not always nicely correlate with gate size, 
and sometimes it is not even a convex function.  
Alternatively, discrete sizing can be done using global search 
techniques [7]. These techniques attempt to reach a global 
optimum through a sequence of local moves, i.e., single-gate 
changes. While these are computationally expensive, they can 
take advantage of very accurate delay models and are not limited 
by assumptions needed for analytical techniques. Global search 
techniques can enforce complex constraints by rejecting moves 
that violate them (e.g., validity of the placement), and they can 
simultaneously combine sizing with other local logic 
optimizations (e.g., gate placement, buffering, pin swapping). 
They have been shown to provide good results for discrete 
libraries. They are particularly effective in the context of 
physical design, since they can focus on small critical sections, 
use the most accurate delay models (including interconnect 
delay), and find a small sequence of moves that meets timing 
constraints while maintaining the validity of the placement.  

3.2.2 Buffering 
Buffering serves multiple functions: (1) Long wires result in 
signal attenuation (slope degradation). Buffers (or repeaters in 
this context) are used to restore signal levels. (2) A chain of one 
or more buffers can be used to increase the drive strength for a 
gate that is driving a large load. (3) Buffers can be used to shield 
a critical path from a high-load off-critical path. The buffer is 
used to drive the off-critical path load so that the driver on the 
critical path sees only the buffer's input pin capacitance in place 
of the high load. 
It is possible to come up with ad-hoc solutions for each of the 
above cases. For example, repeaters can be added at fixed 
wirelength intervals determined by the technology. However, 
critical nets often need to be buffered to satisfy more than one of 
the above requirements. Algorithmic solutions are preferred that 
balance the attenuation, drive strength, and shielding 
requirements. This problem is hopelessly NP-hard. Even the 
problem of determining the best buffer tree for a given net, 
ignoring the placement of the driver and the sink pins, has been 
shown to be NP-hard [28]. An interesting solution exists for the 
case when the topology of the buffer tree is fixed and the 
potential buffer sites are fixed. This is the case when the global 
route for the net is already determined and the buffer tree must 
follow this route. A dynamic programming algorithm, using an 
Elmore delay model for the interconnect, finds an optimal 
solution in polynomial time [12]. Various attempts have been 
made to overcome the two limitations of this algorithm; the fact 
that the topology is already fixed, and that the Elmore delay 
model does not accurately capture the resistive effects of DSM 
technologies. The former is considered to be more of a problem, 
since fixing the topology can severely limit the shielding 
possibilities and lead to overall sub-optimal solutions.  
What is needed is the ability to determine the net route as part of 
the buffering solution. Some attempts have been made to 
develop heuristic solutions [23, 29], including adding additional 
degrees of freedom like wire and driver sizing. These techniques 
give better solutions than the fixed topology approach, but it is 
hard to say how optimal they are. Various constraints must be 
handled when routing and buffering the net, like routing 

blockages and restricted buffer locations due to placement 
keepouts [34, 18]. 
Determining the optimal buffer tree for a given net is only one 
part of the complete buffering problem. Given that buffering a 
given net can change the constraints (required time/slack, load) 
on the pins of another net, the final solution is sensitive to the 
order in which the nets are visited. In addition, once a net is 
buffered, the gates may no longer be optimally sized. Resizing 
gates before the next net is buffered can modify the buffering 
problem. Researchers have considered combining sizing and 
buffering into a single step [19], but this problem is very 
complex and far from being considered solved. 

3.2.3 Resynthesis and Remapping 
Technology mapping attempts to find the best selection of cells 
from a given cell library to meet a given delay constraint with 
the least area/power [14]. In the context of physical synthesis, 
the challenge is to work on sections small enough to not 
significantly disturb the placement, yet significant enough to 
improve the design. Another problem is to determine where to 
place the new cells created during the remapping phase [22]. 
Some simple solutions based on fixed boundary locations can be 
used during the mapping itself, with a clean-up step to make the 
placement legal [24]. 
Logic restructuring, which consists of resynthesizing some logic 
from scratch, is the most aggressive logic optimization, but it 
can significantly change the structure of the netlist. This also 
makes it the most difficult to apply in a physical design flow 
where the changes are expected to be small to maintain the 
validity of the placement. However, the basic ideas in 
restructuring can still be used to improve the timing and 
congestion properties of the netlist as long as the changes are 
focused on key sections and the modifications are within the 
space of acceptable changes (e.g., the changes do not violate 
capacity/congestion constraints for various physical regions of 
the design).  
Timing driven logic resynthesis based on arrival times of critical 
signals can be used (the basic idea is using late signals as close 
to the outputs as possible). However, it is also desirable to keep 
together signals that are physically close to each other. This 
means that in addition to its arrival time, the location of a signal 
must be taken into account as the Boolean function is 
synthesized.  

3.3 Clock Tree Synthesis 
In the traditional flow, clock tree is a separate task. Typically, it 
is built once the locations of the sequential elements and gated 
clocks are known, i.e., after placement. But synthesizing clock 
trees after placement creates routing problems that occur too late 
to be fixed.  
Clock tree synthesis must be part of the refinement process, 
because it contributes significantly to congestion and power 
dissipation, as well as timing using useful skew. Note that 
targeting a zero-skew clock tree has no justification but 
historical. First, skew can be used to optimize the timing. 
Second, a zero-skew clock tree means that all the sequential 
elements will toggle at the same time, which produces a peak 
power that is not desirable. After some level of quadrisection, 
the distribution of the sequential elements and gated clocks in 
the bins will not change substantially. At that level one can 
determine the amount of routing and buffers needed to carry the 
clock signal, and the trunk of the clock tree can be built. From 
that point, these resources are accounted for by placement for 
congestion. As the partition size decreases and the detail 
increases, the clock tree is refined and its resources are updated. 
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This avoids a congestion surprise at the end and gives tight 
control over clock skew requirements, since the placement is 
flexible enough so that clock pins with common skew can be 
grouped together. It also allows a fine control of the skew for 
timing optimization, since the critical paths are continuously 
monitored. 
Note that the scan chain can be similarly refined, un-stitched and 
re-stitched to accommodate the placement of sequential elements 
and to minimize the congestion while still meeting the scan 
ordering constraints. 

3.4 Power/Ground Routing 
The power/ground network can have a huge impact on 
congestion. For that reason, it must be put in place as early as 
possible so that its contribution to congestion is accounted for. 
Initially, power routing is performed according to a user-defined 
routing topology (e.g., chip ring, power grid). At some level of 
the quadrisection, IR drop analysis can be done to check the 
reliability of the power/ground network. This allows an accurate 
assessment of the quality and integrity of the power routing 
because the power rail currents will not change much as the 
placement is further refined.  
Power consumption depends on net capacitances and toggle 
rates (number of transitions on a net per unit of time). The 
switching activity can obtained by an external simulation (e.g., 
VCD file), or be computed on-the-fly using simulation (slow, 
but accurate) or by probabilistic analysis (fast, but sometime 
misleading). Knowing the distribution of the current sources in 
the bins, one can extract a power network that is simulated to 
produces an IR drop map. This helps in adjusting the power grid 
since placement is still flexible enough at that stage to 
accommodate adding and/or widening power stripes. 

3.5 Crosstalk 
Fixing crosstalk post-layout is a costly process and may not 
converge, so crosstalk needs to be addressed as early as possible 
in the flow. The router can be constrained to avoid crosstalk 
effects in the first place (e.g., setting a maximum length of 
parallel routing between any pair of nets). However, this method 
is based on empirical data and does not reflect the physics of 
crosstalk, which must include signal-switching window 
dependency. The router ends up over-constrained, leading to 
irresolvable congestion problems. 
There have been attempts at implementing crosstalk avoidance 
during placement and global routing. The idea is that even if 
detailed routing is not available, the signal switching windows 
can be used statistically to identify the potential problem nets. 
The problem nets are given more white space during global 
routing so that the detailed routing has enough resources to 
perform spacing, shielding, or re-routing and automatically fix 
crosstalk problems. This requires the detailed router to have 
gridless capabilities with variable width and variable spacing so 
that crosstalk issues can be addressed effectively. 

3.6 IR Drop 
IR Drop is the problem of voltage drop on the power and ground 
due to high current flowing through the power/ground resistive 
network. When the voltage drop (or rise in the ground net) 
becomes excessive, this causes delays in gates, which can 
produce timing violations. If severe enough, IR drop may also 
cause unreliable operation because of reduced noise margins.  
IR drop becomes more critical for DSM designs because: (1) 
there are more devices, thus there is a higher current demand; (2) 
the wire and contact/via resistance of the supply network 

increases because of narrower wires and fewer contacts/vias; (3) 
the supply voltage is decreased to 1.5 volts and below; (4) noise 
margins scale as well. As an example, the delay increase 
produced by a 0.15V drop through a typical inverter at 0.18µm is 
10%, and is more than 60% for a 0.5V drop. 
For many designs today, IR drop is being addressed by over-
designing the power network with wide power buses and 
multiple power meshes. However, this severely reduces the 
available routing resource and is likely to cause routing 
congestion problems. 
An accurate IR drop analysis is done with a transistor level 
simulation that computes the dynamic current flows. This is a 
costly process that takes far too long to perform for a complete 
chip. Fortunately, the simulation can be done at the cell level 
using cell-level power models, an RC model for the 
interconnect, and data on switching direction and frequency. 
This produces average current per cell, from which the average 
voltage drop can be approximated using a resistance model of 
the power and ground network. Although less accurate, this 
method can identify regions with voltage drops high enough to 
be significant. 
When the level of quadrisection is fine enough, the interconnect 
loading can be obtained accurately while the placement has 
enough flexibility to accommodate the power routing change. 
Optimizing the power routing for both IR drop and congestion 
can be done at that level. The currents of the cells in a bin are 
accumulated and represented as a single current source to the 
power grid. A fast simulation is then used to evaluate the voltage 
drop so that the power network can be adjusted accordingly. 
Power stripes can be narrowed or suppressed to free some 
routing resources, or widened and augmented to meet the IR 
drop specification.  

3.7 Electromigration 
When there is too much current density through the interconnect 
for an extended period of time, its resistance increases. This 
results in self-heating and metal disintegration, which eventually 
causes an open or short in the circuit. This effect is called 
electromigration (EM). It becomes more severe with the advent 
of DSM. As circuits get faster and bigger, more currents flow 
through the interconnects, which at the same time are getting 
narrower with every new generation. The current density (the 
amount of current flowing per unit area) increases super-linearly 
with every new DSM generation. It is no longer feasible for 
manufacturing to provide enough cross-section area on the 
interconnects to guarantee net integrity at all line widths. 
EM has traditionally been addressed by over-designing with 
wide power buses, which is where most of the EM issues are 
expected. As explained above, however, over-designing the 
power network is costly in terms of routing resources. Also, 
electromigration effects have become important for clock trees, 
and will affect signal nets in the future. For clock and signal 
nets, there may not be enough contacts/vias to sustain the current 
through the interconnect. A solution that provides sufficient 
interconnect width without excessive over-design is necessary. 
Tools that compute current densities from the final layout are 
often used to analyze EM problems, which are then fixed 
manually by widening the problem nets. However, this requires 
considerable expertise and time, and the extra space necessary 
for widening the nets may not be available. 
It is possible to address EM much earlier in the design flow, by 
calculating the required width of the interconnect as placement 
and routing are refined. Once the placement is accurate enough 
for a good estimation of the net capacitances, the current flow in 
these nets can be calculated, which, together with the switching 
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activity of the nets, enables electromigration analysis. The 
interconnect width and via count needed to support the current 
are identified at each level of quadrisection. This drives the 
routing resources allocated by the global router. Consequently, 
the detailed router will be able to satisfy the electromigration 
routing requirements together with other requirements.  

3.8 Routing 
One of the most important requirements to achieve good routing 
is the correlation between the global and detailed routers. The 
detailed router must finalize what the global router predicted, 
and the routing resources allocated by the global router must 
actually be available to the detailed router. It is unrealistic to use 
two uncoupled global and detailed routers, since congestion is a 
dominant factor in DSM design. 
The global router must be timing, congestion and crosstalk 
driven, and support multiple widths and spacing. The detailed 
router should support both gridded (for speed) and gridless (for 
detailed optimization) modes. It must support variable wire 
width (e.g., for delay optimization). It must enforce numerous 
DSM routing rules (e.g., metal/via antenna, end-of-line, 
minimum area, via array generation for fat-wire connections, 
variable spacing based on width, etc). Also it must have timing, 
congestion, crosstalk, and electromigration awareness at all 
times (e.g. during layer assignment and wire sizing).  

Conclusion  
With every process generation, there are more transistors, higher 
clock frequencies, and additional physical effects to consider. 
This paper discussed the challenges that need to be addressed 
during physical implementation in the creation of a production 
worthy GDSII. A flow based on placement and routing 
refinement (including clock tree, power routing, and scan chain) 
with an open cost function, together with physical logic 
synthesis and optimization, can meet these challenges. It enables 
early estimation of congestion, timing, and physical effects at a 
point in the flow when the design has enough flexibility to 
accommodate perturbations produced by the optimization 
procedures. The physical prototype produced by the refinement-
based flow restores the design signoff solution lost in the mid-
90�s. 
The interconnect centric DSM era raises new issues, where 
placement, routing, and logic optimization are tightly 
interdependent. Further, the introduction of hierarchy to handle 
multi-million gate designs requires new full-chip design system.  
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