

HOMEWORK – TARGETING XILINX & ALTERA

Prof. Don Bouldin – 26 Sept. 2011

Purposes: Perform pre-synthesis simulation using *ModelSim*, synthesis using *Synplify_Premier_DP*, place & route for both Xilinx (Virtex) and Altera (Cyclone) parts and perform post-layout simulation using *ModelSim*.

<u>Part A – Tutorial</u>

Download: http://web.eecs.utk.edu/~bouldin/protected/551-hw6.tar.gz

or copy the files on ada3.eecs.utk.edu:

1. cp ~bouldin/webhome/protected/551-hw6.tar.gz .

- 2. gunzip 551-hw6.tar.gz
- 3. tar –xvf 551-hw6.tar

Now, move down to the subdirectory:

4. cd 551-hw6

Now, perform pre-synthesis simulation by typing:

5. ./presynth_sim

This will bring up the following windows with the radix of "monitor" manually changed to "unsigned" and selecting View \rightarrow Zoom \rightarrow Range \rightarrow 2000ns to 2500ns:

材 wave - default					
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>A</u> dd F <u>o</u> rmat	<u>T</u> ools <u>W</u> indow				
🗋 🖆 🖬 🎒 👗 🖻 (в⊇⊇∣ие≞ % ♦ ₩ 🗸 Б	X def			
💧 🛧 🦛 🗼 📑 🗍 100 ns	, 🛛 🖬 📭 (6 (9 🖬 🖬 🗍	ਸ ਸ ਦ →			
📘 💽 💷 📴 🛪 🍘	<u>ୁ</u> । ତ୍ ର୍ ର୍ ର୍ ରୁ				
Messages					
Iseq_testbench/clock					
⊕	89 <u>34 /55 89 89 89 89 89 89 89 89 89 89 89 89 89 </u>	<u>,144</u>			
<pre>/seq_testbench/reset</pre>	P				
		5			
🛎 📰 💿 🛛 Now	3000 ns	2400 ns			
💼 🧪 🤤 🛛 Cursor 1	2250 ns 2250 ns				
2 us to 2500 ns Now: 3 us Delta: 2					

Expand the "uut" to show the coverage:

▼ Instance	Design unit	D∉V Stn	nt count	Stmt hits	Stmt misses	Stmt %	Stmt graph
🖃 🗾 seq_testbench	seq_testbench(struct)		42	38	4	90.5%	
📥 🗾 uut	<pre>seq_generator(struct)</pre>		38	34	4	89.5%	
🖨 🗾 acc_a	accumulator(spec)		4	3	1	75%	
- 🌖 truth_pr	. accumulator(spec)						
d_cos 📜 🖨	accumulator(spec)		4	4	0	100%	
- 🎱 truth_pr	. accumulator(spec)						
🖨 🗾 acc_sum	accumulator(spec)		4	3	1	75%	
- 🕘 truth_pr	. accumulator(spec)						
🕕 🗾 fsm	control(fsm)		23	21	2	91.3%	
🥥 line217	<pre>seq_generator(struct)</pre>						
@ line220	<pre>seq_generator(struct)</pre>						
- 🕘 line260	<pre>seq_generator(struct)</pre>						

Now, quit ModelSim and synthesize the VHDL source file using *Synplify_Pro* into the Xilinx Virtex part (xc2vp30ff896-7) by typing:

6. synplify_premier_dp –batch -tcl synplify-virtex.tcl

7. The results are reported in rev_1/Seq_Generator.srr: LUTs: 22 (0%)

Copy the required files to the rev_1 directory and then generate the Xilinx layout using the Xilinx fitter:

8.	ср	stim.do	rev_1
9.	ср	Seq_TestBench.vhd	rev_1
10.	ср	vsim-post-virtex	rev_1
11.	ср	virtex-fit	rev_1
12.	ср	virtex-view	rev_1
13.	cd	rev_1	

14. ./virtex-fit Seq_Generator

To determine the resources used, type:

15. grep SLICE Seq_Generator_r.par

Number of SLICEs 14 out of 13696 1%

To view the layout, type:

16. ./virtex-view Seq_Generator

си ликая лика ликая округая солнах сала колономи декалистика и на колономи. На при транита со при транита со транита со со составата при транита при транита. В колономи со составата и при транита со составата декалист на при транита при транита.	на и правита в правита и правита на правита и правита. Оправита на правита спората на правита на пра Стали и правита на прави
	VANET EET WET VEET VAT VEET VAEWEET VAE E
	() LETERETERETERETERETERETERETERETERETERETE
	·>>+>+++++++++++++++++++++++++++++++++
<u> </u>	1000 1000 1000 1000 1000 1000 1000 100
	() * * * * * * * * * * * * * * * * * * *
	<pre>clinetic contract contract contract contract argaments arg argaments argaments arg argaments argaments argament</pre>
▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖,,,,,,,,,,,,,,,,	
	~~~~~
······································	
isin baaraa baabaa baabaa baadaa baabaa baabaa baabaa ah	in a substance of second second substances and substances of the second se
	An and a reason of the set of the
	<pre>// ***********************************</pre>
-	

Perform post-layout simulation using *ModelSim*:

## 17. ./vsim-post-virtex

This will bring up the following window:

🕅 wave - default		
<u>File E</u> dit <u>V</u> iew <u>A</u> dd F <u>o</u> rmat ]	[ools <u>W</u> indow	
🗋 🖆 🖬 🎒 🛔 🗞 🛍 🛍	l 12 12   M & 16   🕹 🕮 🚑 🕺	¥
🛉 🔶 🛶 🕴 📑 🕺 100 ns	5 El El El (7) 7 🖾 🛍 🔟 📙 🗄 🛨 🛨	
📘 💽 🎫   📴 🖂 🕷	<b>Q Q Q</b>	
Messages		
		$\Delta$
📃 🕣 🔷 /seq_testbench/monitor 55	55	
/seq_testbench/reset 0		
🛎 📰 💿 🛛 Now 000	ins 235) ns 2352 ns 2354 ns 2356 i	ns 235
💼 🧪 🤤 👘 Cursor 1 350	ns 2350 ns	
2348 ns to 2358 ns	Now: 3 us Delta: 3	

**18.** Capture the waveform and note the signal begins to change at 2354 ns and stabilizes at 2355 ns instead of 2250 ns for a delay of 5 ns + 100 ns (initialization).

Now, move up one directory ( **cd** ...) and synthesize the VHDL source file using *Synplify_Premier_DP* into the Altera (Cyclone II) part by typing:

## **19.** synplify_premier_dp –batch -tcl synplify-altera.tcl

The resulting net-list will be placed in a newly created subdirectory, rev_2.

20. View the results in rev_2/Seq_Generator.srr: registers 26 of 33216 (0%)

Copy several files to rev_2 and generate the Altera layout using the Altera fitter:

21. cp altera-fit.tcl rev_2

Move down to the directory:

22. cd rev_2

Now, generate the Altera layout:

## 23. quartus_sh -t altera-fit.tcl

24. View the results in Seq_Generator.fit.rpt:

*Total logic elements:* 20 / 33,216 ( < 1%)

**25.** Now, move to the simulation directory and copy the required files:

## cd simulation/modelsim

cp ../../../Seq_TestBench.vhd .

cp ../../../stim.do .

cp ../../vsim-post-altera.

**26.** Perform the post-layout simulation by typing:

./vsim-post-altera

**27. Capture** the waveform and note the signal stabilizes at 2257 ns instead of 2250 ns for a delay of **7 ns**.

🔷 k	eq_testbench/clock	1					
🔷 k	eq_testbench/moni	89	55			89	
🔶 k	eq_testbench/reset	0					
<b>2</b> 📀	Now	3000 ns	225	lııı Ons	I	226	lı Ons
20	Cursor 1	2257 ns	2257 ns				

## APPENDIX

#### hw6-demo

```
cp ~bouldin/webhome/protected/551-hw6.tar.gz .
gunzip 551-hw6.tar.gz
tar –xvf 551-hw6.tar
cd
       551-hw6
./presynth_sim
synplify_premier_dp -batch -tcl synplify-virtex.tcl
vi rev_1/Seq_Generator.srr
cp stim.do
                         rev_1
cp Seq_TestBench.vhd rev_1
cp vsim-post-virtex
                         rev 1
cp virtex-fit
                        rev 1
cp virtex-view
                        rev 1
cd rev_1
./virtex-fit Seq_Generator
grep SLICE Seq_Generator_r.par
./vsim-post-virtex
./virtex-view Seq_Generator
cd ..
synplify_pro -batch -tcl synplify-altera.tcl
vi rev_2/Seq_Generator.srr
cp altera-fit.tcl
                            rev 2
cd rev 2
quartus_sh -t altera-fit.tcl
      Seq Generator.fit.rpt
vi
cd simulation/modelsim
cp ../../../Seq_TestBench.vhd .
cp ../../../stim.do .
cp ../../vsim-post-altera.
./vsim-post-altera
```

#### presynth_sim

#./presynth_sim
vlib work
vcom -work work Seq_Generator.vhd
vcom -work work Seq_TestBench.vhd
vsim -coverage Seq_TestBench -do stim.do

#### <u>stim.do</u>

add wave * run 3000

#### synplify-virtex.tcl

#synplify_premier_dp -batch -tcl synplify-virtex.tcl project -new proj.prj add_file Seq_Generator.vhd impl -add rev_1 impl -active "rev 1" set_option -technology VIRTEX2P set_option -part XC2VP30 set option -package FF896 set_option -speed_grade -7 set option -synthesis onoff pragma 0 #map options set_option -frequency 25.00 set_option -fanout_limit 500 set_option -domap 1 set_option -cliquing 1 set_option -pipe 0 set_option -retiming 0 set option -fixgatedclocks 0 project -run synthesis

#### <u>virtex-fit</u>

#./virtex-fit Seq_Generator source /usr/local/xilinx/10.1/ISE/settings64.csh ngdbuild \$1.edf map -cm speed -timing \$1.ngd par \$1.ncd -w \$1_r.ncd trce -u 100 \$1_r.ncd -o \$1_r.twr netgen -sta -w \$1_r.ncd \$1_sta.v -ofmt verilog netgen -sim -tb -w \$1_r.ncd \$1_sim.vhd -ofmt vhdl

#### vsim-post-virtex

#./vsim-post-virtex
vlib work
vcom -work work Seq_Generator_sim.vhd
vcom -work work Seq_TestBench.vhd
vsim Seq_TestBench -coverage -do stim.do -sdftyp UUT=Seq_Generator_sim.sdf

#### synplify-altera.tcl

#synplify_premier_dp -batch -tcl synplify-altera.tcl project -new proj.prj add_file Seq_Generator.vhd impl -add rev 2 impl -active "rev_2" set_option -technology CYCLONEII set_option -part EP2C35 set_option -package FC672 set_option -grade -6 set option -synthesis onoff pragma 0 set_option -result_file Seq_Generator.vqm #map options set option -frequency 25.00 set_option -fanout_limit 500 set_option -pipe 0 set_option -retiming 0 set_option -fixgatedclocks 0 project -run synthesis

#### <u>altera-fit.tcl</u>

#quartus_sh -t altera-fit.tcl
set project_name Seq_Generator
# Open the Project. If it does not already exist, create it
if [catch {project_open \$project_name}] {project_new \$project_name}
set_global_assignment -name family CYCLONEII
set_global_assignment -name device EP2C35F672C6
set_global_assignment -name fast_fit_compilation on
set_global_assignment -name eda_simulation_tool "ModelSim (VHDL output from
Quartus II)"
create_base_clock -fmax 25MHz -target clk clk
package require ::quartus::flow
execute_flow -compile
project_close

## <u>vsim-post-altera</u>

#./vsim-post-altera Vlib work Vcom /usr/local/quartus/eda/sim_lib/cycloneii_atoms.vhd Vcom /usr/local/quartus/eda/sim_lib/cycloneii_components.vhd Vmap cycloneii work Vcom -work work Seq_Generator.vho Vcom -work work Seq_Generator.vho Vcom -work work Seq_TestBench.vhd Vsim Seq_TestBench -coverage -do stim.do -sdftyp UUT=Seq_Generator_vhd.sdo

#### Seq_Generator.vhd

```
-- VHDL Fibonacci Sequencer Design
 1
 2
 ā
       -- VHDL Entity control
 4
       LIBRARY isse ;
USE isse.std_logic_1164.all;
USE isse.std_logic_arith.all;
 Ś
 67
 8
 9
       ENTITY control IS
10
           PORT(
clock : IN
                                     std_logic
11
                                                   )
                                     std_logic
std_logic
12
13
                reset : IN
                                                   - 2
                         OUT
                olr
                                                    3
14
15
                                     std_logic
std_logic
                inc
                         : OUT
                                                    3
                ld_A_B : OUT
                                                    3
16
17
                ld_sum : OUT
                                     std_logic
           ))
18
19
       END control ;
20
21
       -- VHDL Architecture control
22
23
24
       LIBRARY isse ;
USE isse.std_logic_1164.all;
USE isse.std_logic_arith.all;
25
26
27
       ARCHITECTURE fsm OF control IS
28
29
            -- Architecture Declarations
30
           TYPE state_type IS (
31
               clr_regs,
               inc_accb,
load_acc_sum,
load_acc_A_B
32
33
34
35
           ));
36
37
           -- State vector declaration
           ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF fsm : architecture IS "current_state" ;
38
39
40
41
            -- Declare current and next state signals
42
           SIGNAL current_state, next_state : state_type ;
43
44
       BEGIN
45
46
            clocked : PROCESS (clock, reset)
47
           BEGIN
               IF (reset = '1') THEN
    current_state <= clr_regs;</pre>
48
49
50
                    -- Reset Values
51
52
53
54
55
               ELSIF (clock'EVENT AND clock = '1') THEN
                   current_state <= next_state;
                    -- Default Assignment To Internals
               END IF:
56
57
           END PROCESS clocked;
58
59
           nextstate : PROCESS (current_state)
60
           BEGIN
               CASE current_state IS
61
               WHEN clr_regs =>
next_state <= inc_accb;
62
63
66
66
67
68
97
72
73
74
               WHEN inc_accb =>
next_state <= load_acc_sum;
WHEN load_acc_sum =>
                       next_state <= load_acc_A_B;
               WHEN load_acc_A_B =>
next_state <= load_acc_sum;
WHEN OTHERS =>
                   next_state <= clr_regs;</pre>
               END CASE:
75
           END PROCESS nextstate;
```

```
76
 77
              output : PROCESS (current_state)
 78
              BEGIN
 79
                   -- Default Assignment
                   olr <= '0';
 80
                   inc <= '0';
ld_A_B <= '0';
 81
 82
                   ld_sum <= '0';
 83
 84
 85
                  -- State Actions
 86
                  CASE current_state IS
                  WHEN clr_regs =>
    clr <= '1' ; -- Corrected error on 10/29/Monday
    inc <= '0';</pre>
 87
 88
 89
                       inc <= '0' ;
ld_A_B <= '0' ;</pre>
 90
                       ld_sum <= '0'
 91
                                           .,
 92
                  WHEN inc_accb =>
                       clr <= '0' ; -- Corrected error on 10/29/Monday
inc <= '1' ;</pre>
 93
 94
 95
                  WHEN load_acc_sum =>
    inc <= '0';</pre>
 96
                       ld A B <= 'Ô'
 97
                                           )
                       ld_sum <= '1'
 98
                                           )
                  WHEN load_acc_A_B =>
ld_A_B <= '1';
ld_sum <= '0';
 99
100
101
102
                  WHEN OTHERS =>
103
                       NULL;
104
                  END CASE;
105
106
              END PROCESS output;
107
108
          END fsm;
109
110
          -- VHDL Entity accumulator
111
          LIBRARY isse ;
USE isse.std_logic_1164.all;
112
113
114
          USE ieee.std_logic_arith.all;
115
116
          ENTITY accumulator IS
              PORT (
117
                           : IN std_logic ;

: IN std_logic ;

: IN std_logic ;

: IN std_logic ;

: IN std_logic_vector (7 DOWNTO 0) ;

: IN std_logic ;

: BUFFER std_logic_vector (7 DOWNTO 0)
118
                   clock : IN
                          : IN
119
                   clr.
120
                   inc
121
                   ip
122
                   1d
123
                   op
124
              );
125
126
          END accumulator ;
127
```

```
128
       -- VHDL Architecture accumulator
129
130
        ARCHITECTURE spec OF accumulator IS
131
132
        BEGIN
133
134
           truth_process: PROCESS(clock)
135
136
           BEGIN
137
               IF (clock'EVENT AND clock = '1') THEN
                  IF (clr = '1') THEN
138
139
                      -- Reset Actions
                      op <= "00000000":
140
141
                  ELSE
                      IF (1d = '1') THEN
142
                     op <= ip)
ELSIF (inc = '1') THEN
143
144
145
                         op <= unsigned(op)+1;
146
                      ELSE
147
                         op <= op;
148
                      END IF
149
150
                  END IF;
151
              END IF:
152
           END PROCESS truth_process;
153
154
        END spec;
155
156
157
        -- VHDL Entity Seq Generator
158
       LIBRARY iese ;
USE isse.std_logic_1164.all;
USE isse.std_logic_arith.all;
159
160
161
162
163
        ENTITY Seq_Generator IS
164
           PORT (
165
                              std_logic ;
               clk : IN
166
               reset : IN
                               std_logic ;
167
               fibout : OUT
                                 std_logic_vector (7 DOWNTO 0)
168
           );
169
170
        END Seq_Generator ;
171
        LIBRARY isse ;
USE isse.std_logic_1164.ALL;
172
173
174
        USE ieee.std_logic_arith.ALL;
175
176
        ARCHITECTURE struct OF Seg Generator IS
177
178
        -- Internal signal declarations
179
                    i std_logic_vector(7 DOWNTO 0);
        SIGNAL A
                       : std_logic_vector(7 DOWNTO 0);
180
        SIGNAL B
181
                       : std_logic;
        SIGNAL clr
        SIGNAL gnd : std_logic;
SIGNAL inc : std_logic;
SIGNAL ld_A_B : std_logic;
SIGNAL ld_sum : std_logic;
182
183
184
185
186
        SIGNAL SUM
                      : std logic vector(7 DOWNTO 0);
187
188
        -- Implicit buffer signal declarations
189
        SIGNAL fibout_internal : std_logic_vector (7 DOWNTO 0);
190
                               . .
```

```
191
         -- Component Declarations
192
         COMPONENT accumulator
             PORT (
193
                                      std logic ;
194
                 clock :
                            ы
195
                                      std_logic ;
                 olr
                         : IN
                         : IN std_logic;

: IN std_logic;

: IN std_logic_vector (7 DOWNTO 0);

: IN std_logic;

: BUFFER std_logic_vector (7 DOWNTO 0)
196
                 inc
                 ip
1d
197
198
199
                 op
200
             ))
         END COMPONENT;
201
202
         COMPONENT control
             PORT (
203
                                       std_logic ;
                 clock : IN
reset : IN
204
205
206
                 clr
                          : OUT
                          : 0UT
207
                 inc
208
                 ld_A_B : OUT
209
                 ld_sum : OUT
210
        );
END COMPONENT;
211
212
213
         BEGIN
214
         -- Architecture concurrent statements
215
             -- Add signals A and B together
216
             sum <= unsigned(A) + unsigned(B) ;</pre>
217
218
219
             -- Tie signal gnd to ground
             gnd <= '07 ;
220
221
222
             acc_A : accumulator
                 PORT MAP (
clock => clk,
223
224
225
                             => clr,
                     olr
                             => gnd,
=> fibout_internal,
226
                     inc
227
                      ip
228
                     1ā
                              => ld_A_B,
229
                              => A
                     op
230
                 ))
231
             acc_B : accumulator
                 PORT MAP (
clock => clk,
232
233
                             => clr,
=> inc,
234
                     olr
235
                     inc
                             => A,
=> ld_A_B,
=> B
236
                     ip
1d
237
238
                     op
239
                 );
             acc_sum : accumulator
240
                 PORT MAP (
clock => clk,
241
242
                             => clr,
243
                     olr
                             => gnd,
244
                     inc
245
                              => sum,
                      ip.
                              => ld_sum,
246
                     1ā
247
                              => fibout internal
                     op
248
                 ))
249
             FSM control
                 PORT MAP (
clock => clk,
reset => reset,
250
251
252
253
                              => clr,
                     olr
                     inc => inc,
ld_A_B => ld_A_B,
254
255
256
                     ld_sum => ld_sum
257
                 ))
258
             -- Implicit buffered output assignments
fibout <= fibout_internal;</pre>
259
260
261
262
         END struct;
```

#### Seq_TestBench.vhd

```
1
       - VHDL Test Bench for Fibonacci Sequencer Design
 2
       -- VHDL Entity Seq_Generator_tester
 3
 4
 5
       LIBRARY isse ;
USE isse.std_logic_1164.all;
USE isse.std_logic_arith.all;
 6
 7
 8
 9
       ENTITY Seq_Generator_tester IS
10
          PORT (
                                  std_logic_vector (7 DOWNTO 0) ;
std_logic ;
              monitor : IN
11
              clock : OUT
reset : OUT
12
13
                                 std logic
14
15
          ))
16
       END Seq_Generator_tester ;
17
18
       -- VHDL Architecture Seq_Generator_tester
19
20
       ARCHITECTURE spec OF Seq_Generator_tester IS
21
22
       -- Architecture declarations
23
       CONSTANT clk_prd : time := 100 ns
       SIGNAL int_clock : std_logic := '0';
24
25
26
27
       BEGIN
28
          process0 : PROCESS (monitor)
29
          BEGIN
30
              IF unsigned(monitor) > 128 THEN
                  reset <= '1' ;
31
32
              ELSE
33
                  reset <= '0' ;</pre>
              END IF;
34
35
          END PROCESS process0;
36
37
       -- Architecture concurrent statements
       -- Clock Generator
38
39
40
41
       int_clock <= not int_clock AFTER clk_prd / 2;</pre>
42
       clock <= int_clock;</pre>
43
44
       END spec;
45
       LIBRARY isse ;
USE isse.std_logic_1164.all;
USE isse.std_logic_arith.all;
46
47
48
49
50
       ENTITY Seq TestBench IS
51
       -- Test bench has no external interface
52
53
       END Seq_TestBench ;
54
55
56
       LIBRARY iese ;
USE iese.std_logic_1164.ALL;
USE iese.std_logic_arith.ALL;
57
58
59
       ARCHITECTURE struct OF Seq TestBench IS
60
61
       -- Architecture declarations
62
       -- Internal signal declarations
       SIGNAL clock : std_logic;
SIGNAL monitor : std_logic_vector(7 DOWNTO 0);
63
64
65
       SIGNAL reset : std_logic;
66
                     .
                               . .
```

```
ĕ7
       -- Component Declarations
68
       COMPONENT Seq_Generator
69
          PORT (
              clk : IN
reset : IN
fibout : OUT
                               std_logic ;
   std_logic ;
   std_logic_vector (7 DOWNTO 0)
70
71
72
73
          ));
74
       END COMPONENT
75
       COMPONENT Seq_Generator_tester
76
          PORT (
              monitor : IN
77
                                  std_logic_vector (7 DOWNTO 0);
78
                                  std_logic ;
              clock : OUT
79
              reset : OUT
                                  std_logic
       );
END COMPONENT;
80
81
82
83
84
       BEGIN
85
          WT : Seq_Generator
              PORT MAP (
86
                 clk => clock,
reset => reset,
fibout => monitor
87
88
89
              )
90
91
           Checker: Seq_Generator_tester
              PORT MAP (
92
93
                 monitor => monitor,
94
                  clock => clock,
reset => reset
95
96
              ))
97
98
      END struct;
ñň
```