
ECE 552 – Designing with the XUP VirtexIIPro FPGA board

Saumil Merchant <smerchant@utk.edu>
(Revised and partially tested by D. Bouldin on 3/5/07)

Platform based design:

In this motif, a user design (core) interfaces to a pre-existing platform, with the
user mainly concentrating on the core design problem and not on the issues related to the
platform development. The platform here is a programmable SoC that has a processor,
memory, local and peripheral busses, and other I/O devices that have been pre-designed
and are ready to be used. The user core interfaces with the platform via a peripheral bus
to which it communicates as a slave module. The bus connects the core in a memory-
mapped I/O fashion to the processor (in our case, the PowerPC or PPC405) address
space.

Figure 1 shows the SoC platform we will use for our design. ‘UTCore’ is
connected on the OPB (On-chip Peripheral Bus) as the user core. The user core has to
conform to a preset interface (or port map) so that it can communicate seamlessly with
rest of the platform.

Figure 1 SoC Design Platform

 1

mailto:smerchant@utk.edu

Figure 2 Design Hierarchy

Figure 2 shows the design hierarchy for UTCore.vhd. The primary wrapper,
user_interface.vhd, instantiates two user memory banks, mem_bank4096x32. (Note that
each of these 32-bit block RAMs consists of four 8-bit dpram4096x8 modules which
were generated using the Xilinx core generator tool.) Both of these 32-bit memory banks
can be ‘read from’ and ‘written to’ from your logic function as well as the PPC405
processor. The data bus width is 32 bits and hence you can read/write an 8-bit byte, 16-bit
word or a 32-bit word in a single read/write cycle. user_interface.vhd also instantiates a
CLK divider that divides the input OPB CLK (100MHz) by 2. This divided CLK
(50MHz) is fed to your core. Please make sure that your design can run at 50 MHz or
else you will need to generate the appropriate internal CLK division for your logic. In
case of using internal CLK division, make sure that the interface between the memory
bank and your logic still runs at 50 MHz. user_interface.vhd also instantiates your core
logic_func.vhd. In most cases, it is our hope that you will not need to edit
user_interface.vhd and your entire core design will be under logic_func.vhd.

 2

The entity descriptions of user_interface.vhd as well as logic_func.vhd are:

entity user_interface is
 port (
 -- memory mapped input registers
 reg1 : in std_logic_vector(31 downto 0);
 reg2 : in std_logic_vector(31 downto 0);
 reg3 : in std_logic_vector(31 downto 0);
 reg4 : in std_logic_vector(31 downto 0);
 reg5 : in std_logic_vector(31 downto 0);
 reg6 : in std_logic_vector(31 downto 0);
 reg7 : in std_logic_vector(31 downto 0);
 reg8 : in std_logic_vector(31 downto 0);
 reg9 : in std_logic_vector(31 downto 0);
 reg10 : in std_logic_vector(31 downto 0);
 reg11 : in std_logic_vector(31 downto 0);
 reg12 : in std_logic_vector(31 downto 0);
 reg13 : in std_logic_vector(31 downto 0);
 reg14 : in std_logic_vector(31 downto 0);
 reg15 : in std_logic_vector(31 downto 0);

 -- memory mapped output registers
 reg16 : out std_logic_vector(31 downto 0);
 reg17 : out std_logic_vector(31 downto 0);
 reg18 : out std_logic_vector(31 downto 0);
 reg19 : out std_logic_vector(31 downto 0);
 reg20 : out std_logic_vector(31 downto 0);
 reg21 : out std_logic_vector(31 downto 0);
 reg22 : out std_logic_vector(31 downto 0);
 reg23 : out std_logic_vector(31 downto 0);
 reg24 : out std_logic_vector(31 downto 0);
 reg25 : out std_logic_vector(31 downto 0);
 reg26 : out std_logic_vector(31 downto 0);
 reg27 : out std_logic_vector(31 downto 0);
 reg28 : out std_logic_vector(31 downto 0);
 reg29 : out std_logic_vector(31 downto 0);

-- Note: reg0 is mapped to start pulse
-- reg30 is used for counter output
-- reg31 is mapped to oprdy signal

reg0 : in std_logic_vector(31 downto 0);
reg30 : out std_logic_vector(31 downto 0);

 reg31 : out std_logic_vector(31 downto 0);

 Clk : in std_logic;
 Reset : in std_logic;
 Addr1 : in std_logic_vector(31 downto 0);
 Din1 : in std_logic_vector(31 downto 0);
 BE1 : in std_logic_vector(3 downto 0);
 RNW1 : in std_logic;

 3

 CS1 : in std_logic;
 Dout1 : out std_logic_vector(31 downto 0);
 Ack1 : out std_logic;
 Addr2 : in std_logic_vector(31 downto 0);
 Din2 : in std_logic_vector(31 downto 0);
 BE2 : in std_logic_vector(3 downto 0);
 RNW2 : in std_logic;
 CS2 : in std_logic;
 Dout2 : out std_logic_vector(31 downto 0);
 Ack2 : out std_logic);
end entity user_interface;

entity logic_func is

port (
 din1 : in std_logic_vector(31 downto 0);
 dout1 : out std_logic_vector(31 downto 0);
 addr1 : out std_logic_vector(13 downto 0);
 wen1 : out std_logic;
 en1 : out std_logic;
 din2 : in std_logic_vector(31 downto 0);
 dout2 : out std_logic_vector(31 downto 0);
 addr2: out std_logic_vector(13 downto 0);
 wen2 : out std_logic;
 en2 : out std_logic;
 start : in std_logic;
 oprdy : out std_logic;
 reset : in std_logic;
 clk : in std_logic);

end logic_func;

 4

Figure 3 Logic Diagram for user_interface.vhd

 5

Figure 3 illustrates the logic diagram for user_interface.vhd which also has a
memory-mapped register file with 32 general-purpose registers that can be used for input
and output from the PowerPC. These registers are unidirectional with respect to the
PowerPC. Registers1 through 15 can be used for inputs to the user core from the
PowerPC. Registers 16 through 29 can be used as outputs from the user core to the
PowerPC. Register0 has been reserved for the start signal, register31 for the output ready
signal and register30 for the CLK tick counter output. This is a free running counter that
resets to zero at every start pulse and its value is latched in register30 on the OPRDY
pulse. The counter is clocked by the divided clock from the CLK divider, thus
incrementing at 50MHz.

The software that we will use for this lab is

1. Xilinx Embedded Development Kit (EDK) for generating and downloading the
bit stream to FPGA.

2. Synplify Pro from Synplicity for synthesizing user cores.

We will use a C program that runs on the PowerPC to send test vectors to our logic
core and read back its output. The output will be seen on the serial terminal window. This
C program will be compiled and encoded along with the FPGA bit stream in the internal
PowerPC instruction memory. The C code will also be used to transfer a 128 x 128 x 8
raw image from the host machine to the input memory bank of user_interface.vhd via the
UART (serial) interface. We will use an internal PowerPC counter (Time Base) to
measure the time it takes to load the image via the UART. The reported value will be in
number of time base ticks. The time base is a free running, incrementing counter which is
clocked at 300 MHz. Note, this counter is different from the counter embedded in
user_interface.vhd and is clocked via a different clock.

 This lab has been divided in two parts.

Part A

In this part you will synthesize and download a FPGA bit stream on the XUP.
You will fill up the entire input BRAM with dummy data (0x5A5A5A5A). Upon
receiving a start pulse from the PowerPC, logic_func.vhd reads this data from the input
BRAM, inverts it and writes it to the output BRAM. When it finishes its job, it will
assert the OPRDY pulse. Upon receiving the OPRDY pulse, the C code in the PPC will
read back the computed data from the output BRAM.

 6

Follow these steps to synthesize the hardware files and download it to the FPGA.

1. mkdir 552-hw2 ; cp /usr/cad/course/xup.tar.gz 552-hw2
2. cd 552-hw2; gunzip xup_tutorial.tar.gz ; tar - xvf xup_tutorial
3. cd xup_tutorial
4. Open the user_core/user_interface.vhd, user_core/logic_func.vhd and

C_testcode/parta/TestApp_Memory.c to understand what they do.
5. To synthesize your design, type: cd user_core; synth_synplicity

This will produce rev_1/user_interface.edf and rev_1/user_interface.srr [results]

6. cp rev_1/user_interface.edf ../platform/pcores/UTCore_v1_00_a/netlist

7. cp dpram4096x8.edn ../platform/pcores/UTCore_v1_00_a /netlist

8. Open the following file

“xup_tut/platform/pcores/UTCore_v1_00_a/data/UTCore_v2_1_0.bbd” file and
make sure that all the EDIFs (user_interface.edf and dpram4096x8.edn) in your
design are listed in this file. If any of the EDIFs are not listed, please list them.

Steps to build download.bit:

9. Change directory to the xup_tutorial/platform/ directory.
10. Execute: source /usr/cad/.cshrc ; xilinx_latest_tools
11. cp ../C _testcode/parta/TestApp_Memory.c TestApp_Memory/src

cp ppc405_0/libsrc/UTCore_v1_00_a/src/UTCore.h TestApp_Memory/src
12. Clean up any previous synthesis files: make –f system.make hwclean
13. To synthesize the netlist, execute [50 mins]: make –f system.make netlist
14. To PAR and generate a bit file, execute [77 mins]:

 make -f system.make bits
15. To build the software libraries, execute: make -f system.make libs
16. To build the program files, execute: make -f system.make program

This compiles the TestApp_Memory.c.
17. To initialize the BRAMs with the generated program file, execute:
 make -f system.make init_bram

Steps to configure the FPGA with the configuration file:

18. Copy xup_tutorial/platform/implementation/download.bit to

xup_tutorial/download/
19. Copy xup_tutorial/platform/etc/download.cmd to xup_tutorial/download/
20. Transfer the folder “download” and “image” (partB only) and its contents to a

Windows PC in the 425 Ferris Hall lab or your own PC.

 7

Using the XUP board

The XUP board manufactured by Digilent, Inc., has the following features.

• Virtex-2 Pro XC2VP30 FPGA with 30,816 Logic Cells, 136 18-bit multipliers,
2,448Kb of block RAM, and two PowerPC Processors

• DDR SDRAM DIMM that can accept up to 2Gbytes of RAM
• 10/100 Ethernet port
• USB2 port
• Compact Flash card slot
• XSGA Video port
• Audio Codec
• SATA, and PS/2, RS-232 ports
• High and Low Speed expansion connectors with a large collection of available

expansion boards

The reference manual for the board can be found at <http://www.digilentinc.com/>

Figure 4 shows the XUP board.

Figure 4. XUP board from Digilent Inc.

 8

http://www.digilentinc.com/

The on-board FPGA can be programmed using configuration flash memory (or a compact
flash card). We will use the configuration flash along with USB JTAG cable to configure
the FPGA. You should have received one USB cable, one serial cable (male DB9
connectors on both ends) and power supply along with the board. The following steps
show how to connect the board.

21. Make sure that the ON/OFF switch is in the OFF position.
22. Connect one end of the serial cable to the XUP COM port and the other end to

your host machine.
23. Connect one end of the USB cable to the XUP board and other to the host

machine.
24. Connect the power supply to the XUP board.
25. Make sure that all the toggle switches in SW8 are in the ON position and in SW9

are in the OFF position before attempting to download a bit stream to the FPGA.
26. Once you turn the power ON, you will notice a red LED flashing next to the

DIMM slot. You may ignore this since it is not an error. All it indicates is that it
didn’t find a compact flash card in the CF slot.

27. Open: Start > Programs > Xilinx Platform Studio > Xilinx cygwin shell
28. Change directory to the download folder. For example: cd /cygdrive/c/download
29. Open TeraTermPro and set up a serial connection with following parameters:

Baud Rate – 115200
Data – 8 bits
Parity – None
Stop Bit – 1
Flow Control – None
Serial Port – COM port to which the serial cable from XUP is connected.

30. Turn the XUP board power ON.
31. In the cygwin shell window, execute: impact –batch download.cmd

Part B:

In this part we will write pixel data from an image to the input BRAM instead of dummy
data. The logic_func.vhd will as before perform some simple logic function (invert in our
case) and write the computed data to output BRAM. The C code than reads back the
computed data.

Change to the xup_tutorial directory and copy the new C code:

cp C_testcode/partb/TestApp_Memory.c platform

Change to the platform directory and repeat the parta steps beginning with Step 16. This
will compile the new software and initialize the BRAMs. There is no need to re-
synthesize the hardware since there is no change in the hardware logic files.

 9

Steps to generate raw image data file:

The PNM (portable anymap – PGM or PPM) image format is used due to its simplicity.
Basically, PNM images have a three-line-long header and a raster scan of the pixels. For
more information, check 'man pnm'. This flow assumes that the input image uses 8 bits
for its grayscale and is 128 x 128 pixels. For larger grayscale images or color images
(red, green, and blue channels) that can be partitioned on the host and reassembled after
processing by the XUP board.

1. Navigate to the partb image directory: cd {path}/C_testcode/partb/image
2. Convert the input image into grayscale portable pixmap format by typing:

anytopnm lena.jpg > lena.pgm (or use XV or IrfanView (for PC) to save the
image as pgm).
(for color:

anytopnm lena_c.jpg > lena_c.ppm
ppmtorgb3 lena_c.ppm
makes lena_c.red lena_c.grn lena_c.blu)

3. View grayscale image.
xv lena.pgm &

4. Separate header and data:
head -3 lena.pgm > header
tail -1 lena.pgm > datafile.bin

The file datafile.bin now holds the raw grayscale image data from lena.jpg.

Now use the Steps to configure the FPGA with the configuration file to download the bit
stream and test the hardware. When prompted (in the TeraTermPro window) for an input
file, send datafile.bin generated above as input file. (File > send file > datafile.bin).

Steps to view the generated output image
(To be done on PC)

 10

5. Copy and paste the output dump of the image hex values as seen on the
TeraTermPro screen to a binary file on your host. Use notepad to do this. Save
the file as ‘image/dataout.bin’.

6. Run IMparser.exe by double clicking on it. Enter the header filename, data
output (dataout.bin) filename and an output image name (result.pgm)

7. View result image. result.pgm

8. If desired, convert image to any another format.

 11

Appendix

To view the layout, type:

 xilinx_latest_tools; fpga_editor platform/implementation/system.ncd

 12

	ECE 552 – Designing with the XUP VirtexIIPro FPGA
	Appendix

