
Page 1

���������	��


��
���
�������
������
���� "!$#&%� '#&(� )��!+*,( #-��./��01��( !

23�)�4( !5
6�7���
89%��:
�0'!$;=<�>@?BA:0)C6D1��EF(GCH;

*JI$<�K'L" )MN(G )
�
�./OQP=23��<H�:
6C�(�%:��( !$#

RQS T'U"VXWZY U'[6SX[4\^]`_Na1b,cHd&VeT)W9Rf\^g�Y \^T"T)WZY \^g4h
_Na1\^U'a1W ]6Y [ji"\9Y klT)W m$Y Ven@h

opd�S n+qlrlr)s$t



Page 2

Trademarks
Spartan, Virtex are trademarks of Xilinx, Inc.
Alliance Series,AllianceCORE,CORE Generator, LogiCOREare trademarks of Xilinx, Inc.
VSS, DC Professional are trademarks of Synopsys, Inc.



Page 3

Table of contents:

1. Quick Introduction: Cores, CORE Generator (Coregen)
and related terminology................................................................. 1

2. About this tutorial .......................................................................... 2
3. Running Coregen .......................................................................... 2
4. Creating a New Project ................................................................. 3
5. Selecting a component .................................................................. 5
6. Customizing a component ............................................................. 7
7. Generating a component ............................................................. 10
8. Creating VHDL designs containing core(s)................................... 12
9. Simulating a design that contains a core component .................... 14
10.Synthesizing a design containing Coregen components

towards a Virtex technology......................................................... 17
11.Implementing a Synthesized design using the Xilinx

implementation tools ................................................................... 24
12.Performing gate level simulation .................................................. 29

APPENDIX  1:    Directory structure ............................................ 34
APPENDIX  2:    Summary of steps ............................................. 36



Page 4

USING COREGEN TO SYNTHESIZE COMPONENTS TOWARDS A
VIRTEX TECHNOLOGY.

1.   Quick Introduction: Cores, CORE Generator (Coregen) and related
terminology.

Xilinx introduced the Xilinx IP (Intellectual Property) Center in order to facilitate and
improve the design process with their line of software and hardware products.  The
Xilinx IP Center offers an extensive variety of configurable, predesigned
components that are optimized for the Xilinx FPGA families.  These components
can be incorporated into your designs improving both performance and design time.
The Xilinx IP Center is available on the web at address:

www.xilinx.com/ipcenter

A core, also referred to as an IP core, is a pre-made component that can be used
directly in your HDL design. Usually the available cores are optimized for time
and/or space performance.  Cores can be configured to suit your design’s
requirements.  There are two divisions of available cores, namely the LogiCOREs
and the AllianceCOREs.

LogiCOREs are those cores provided free by Xilinx.  Available LogiCORE
components range from simple gate components to memory components, filters,
networking components, image processing components and many others.

AllianceCORE components are components contributed by third party developers.
Again a very large library of components exist under the AllianceCORE program.

A third source of core-related information can be found under the Reference
Designs collection available by Xilinx.  Though no components are available
through Reference Designs, useful information on how optimization is achieved can
be found here.  This information will help you optimize more efficiently your own
custom designs.  The Reference Designs are available at:

www.xilinx.com/products/logicore/refdes.htm

The CORE Generator (Coregen) tool allows one to customize and generate an
available core.  Coregen provides a list of the available cores installed on the



Page 5

system and an easy to use Graphical User Interface for customization and
generation.

A final note:  The available core and reference designs database is always being
updated.  It is recommended for someone who wishes to utilize a core to search on
the Xilinx IP Center web page (provided above) for core availability.

2.   About this tutorial

This tutorial is intended to be a quick and complete guide on how to use Coregen to
integrate core components in a VHDL design targeting a Xilinx Virtex/VirtexE
architecture.

The procedures involved are presented through an example where a memory
component is generated, simulated (both RTL and gate level simulations are
performed) synthesized and implemented.  Screen captions are provided to
illustrate every step of the procedure.  Usually these captions will indicate clearly
the options that you will have to select.

The simulation and synthesis steps are performed with the Synopsys VSS simulator
and the Synopsys Design Compiler tools.  Implementation is achieved with the
Xilinx Alliance software.

Familiarity with those tools is essential in order to be able to complete this guide
successfully. Refer to Digital Logic Synthesis Using Synopsys and Xilinx - A Tutorial
located at www.ece.concordia.ca/Documentation/synopsys/tutorial.html  if you are
not comfortable using those tools.  Also basic knowledge of the UNIX operating
system is assumed .

Throughout this guide you will need to create files, generate directories and copy
files to several locations that probably do not exist in your current directory
structure.  In the Appendix  a suggested directory structure that you may use (or
adapt to your existing directory structure) in order to avoid confusion is provided.

3.    Running Coregen

The file xilinx.vM3.1i.env  must be sourced before one can run any Xilinx
tools. The file is located at:



Page 6

/CMC/ENVIRONMENT/xilinx.vM3.1i.env

and can either be copied to another location or sourced directly from there.

source /CMC/ENVIRONMENT/xilinx.vM3.1i.env
coregen &

Note: The filename provided here might change in the case of a software upgrade.
This applies for many other full path names in this tutorial.

4.   Creating a New Project

A project can be viewed as a directory in your account where Coregen will generate
a set of files for a specific component. Several components can exist within a
project directory

Once Coregen is invoked, a window titled ’Getting Started’  will open
(Figure 1).  Select ’Create a New Project’  and press on the ’OK’  button.
In the new window that will appear (Figure 2); specify the working directory where
the project will be saved and select the following options:

Target Architecture: Virtex
Design Entry:  VHDL Synopsys

Select ’OK’ .  Coregen will offer to create the specified directory if it does not
already exist. If any warnings appear at this point in a new window, read and ignore
them.

Figure 1: ’Getting Started’ with a new project.



Page 7

A project can also be created by selecting the 'New...'  option in the
'Project'  menu.  In the window that will appear, select the options specified
above.  Figure 3, shows the Coregen main.

Figure 2: New Project window.



Page 8

5.   Selecting a component.

In this window, (Figure 3 above) locate the ’View Catalog’  pull down menu
(near the top left corner of the window) and select the method of displaying the
components. The available options are:

by Function
Alphabetically
by Vendor
by Family
by Type

If not selected already choose 'by Function' .  On the left side of the Coregen
window the component categories can be selected.

In this tutorial we will be implementing a small, random access memory (RAM)
component to illustrate the general procedures involved in creating and using
Coregen generated components in a design.

Figure 3: Xilinx CORE Generator main window.



Page 9

Double click on the 'Memories & Storage Elements'  entry and then on
newly listed 'RAMs & ROMs'  entry (Figure 4).

The available components will be displayed in the right-hand side of the window.
Notice that some of the component names appear in a light grey color which
indicates that those components are not available for the selected FPGA family.

Locate the component named 'Single Port Block Memory' and verify that
the version number next to the name is '3.2'.  It is important to ensure that the
version of the Coregen 'Single Port Block Memory'  component is 3.2, as
different versions will most likely require different customization options than what is
specified in this guide.

When the name of a component is shaded then that component is not available for
the selected family and it cannot be selected. The colored diamond shapes indicate
the FPGA families for which the component is available.  The 'Single Port
Block Memory'  component, for example, is available for the Virtex, Spartan II
and Virtex II technologies.

Figure 4: Specifying the component you want to generate.



Page 10

Double click on the name of the component 'Single Port Block Memory' ,
version 3.2, in order to select it and a new window will appear.  This is the
Component Customization window (Figure 5).

6.   Customizing a component.

The parameters of the selected component are specified in this window.  The
available options differ depending on the type and version of a component.  For
complete documentation on a component refer to the corresponding data sheet,
which can be viewed by selecting the button 'Data Sheet...' located near the
middle of the bottom on the component customization window.

Figure 5: The Component Customization window.



Page 11

To customize the Single Port Block Memory, set the following values in the
appropriate fields:

Component Name:ram_8x8
Port Configuration:Read And Write
Memory Size: Width: 8  Depth: 8

To initialize the contents of a memory (and this applies for either RAMs ,ROMs or
any other components that requires initialization) an appropriate text file with
extension .coe is required.  Change to the project directory (the one created
according to the steps in section 2) and with a text editor of your choice (Figure 6)
create the file: ram_8x8_init.coe containing the following:

MEMORY_INITIALIZATION_RADIX=2;
MEMORY_INITIALIZATION_VECTOR=
00000000,
00000001,
00000010,
00000011,
00000100,
00000101,
00000110,
00000111;

Figure 6: Use your preferred editor to edit the .coe file.



Page 12

In the 'initial contents'  field check the option 'Load Init File'  and
select the 'Load File...'  button.  A new dialog box will appear for the .coe
(Figure 7) file selection.  Specify the full path to the .coe file.

The MEMORY_INITIALIZATION_RADIX keyword seen in the file content specifies
that the initial data provided in the MEMORY_INITIALIZATION_VECTOR command
will be in binary format. Other possible formats are:

MEMORY_INITIALIZATION_RADIX=10;  for decimal
MEMORY_INITIALIZATION_RADIX=16;  for hexadecimal

The MEMORY_INITIALIZATION_VECTOR is followed by the data values separated
by commas, terminated with a semicolon.

If the file was read correctly (Figure 8) by the tool, no error messages will appear
and the text field next to the 'Load File...'  button will contain the full path to
the .coe file in black color. If any errors occurred during the translation of the .coe
file, then an error message will appear and the textbox with the .coe file location will
contain red characters.  In the case of errors you need to correct the file. A .coe file
is needed in order to provide initial values for a component.  Refer to the
component data sheet for further details regarding the syntax of the initialization for
a particular component (e.g. the coefficients for a FIR filter).

Figure 7: Selecting the .coe file.



Page 13

7.   Generating a component

Once a component is customized, it can be generated by selecting the
'Generate'  button located at the bottom left of the component customization
window.  Upon generation, Coregen will create the files that are necessary in order
to use the core. Typical such files are:

.ASY Graphical symbol file, used by the
Xilinx Foundation iSE tools.

.EDN EDIF netlist file, used by the Xilinx implementation tools.

Figure 8: Complete customization options.  The component can now be generated.



Page 14

.MIF Memory Initialization File. This file is used by the
simulation tools to provide the initial contents of the
memory.

.VHO A template file containing information on how to use a
 core in a VHDL design.

.VEO A template file containing information regarding the
usage of the core in Verilog designs.

.XSF A pin file used by Xilinx Foundation tools to create a
graphical symbol for the core.

Select the 'Generate' button and Coregen will create the following files in the
specified project directory:

-rw-r--r-- 1 k_vitoro beng 384  Jun 28 12:16 ram_8x8.asy
-rw-r--r-- 1 k_vitoro beng 9294 Jun 28 12:16 ram_8x8.edn
-rw-r--r-- 1 k_vitoro beng 72   Jun 28 12:15 ram_8x8.mif
-rw-r--r-- 1 k_vitoro beng 3370 Jun 28 12:16 ram_8x8.vho
-rw-r--r-- 1 k_vitoro beng 1037 Jun 28 12:16 ram_8x8.xco

Now the memory core is ready to be used as a component in an RTL design.

Figure 9: Your core component is being generated.



Page 15

8.   Creating VHDL designs containing core(s).

Before the generated core can be used as a component in an RTL design, the
XilinxCoreLib library path must be specified in your '.synopsys_vss.setup'
file.  Recall that the '.synopsys_vss.setup'  file is used by the Synopsys
VSS simulator tool. The sample '.synopsys_vss.setup'  file provided below
shows the necessary addition:

After the addition the XILINXCORELIB library can be declared and used in your
VHDL code.

The following sample code illustrates how a core can be used in an RTL design.
Note the code segments that were copied directly from the ram_8x8.vho file
mentioned in the previous section.

-- Sample VHDL code that instances a Coregen
-- generated component.

library IEEE;
use IEEE.std_logic_1164.all;

library XILINXCORELIB;
use XILINXCORELIB.all;

entity coregen_ram_8x8 is
        port(
                addr: IN std_logic_VECTOR(2 downto 0);
                clk: IN std_logic;
                din: IN std_logic_VECTOR(7 downto 0);
                dout: OUT std_logic_VECTOR(7 downto 0);
                we: IN std_logic);
end coregen_ram_8x8;

architecture coregen of coregen_ram_8x8 is

-- The following component declaration code
-- was pasted directly from the file
-- ram_8x8.vho which was generated by coregen

WORK > DEFAULT
DEFAULT: ../Work
TIMEBASE = NS
XILINXCORELIB : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/xilinxcorelib



Page 16

------------- Begin Cut here for COMPONENT Declaration ------ COMP_TAG
component ram_8x8
        port (
        addr: IN std_logic_VECTOR(2 downto 0);
        clk: IN std_logic;
        din: IN std_logic_VECTOR(7 downto 0);
        dout: OUT std_logic_VECTOR(7 downto 0);
        we: IN std_logic);
end component;

-- FPGA Express Black Box declaration
attribute fpga_dont_touch: string;
attribute fpga_dont_touch of ram_8x8: component is "true";

-- COMP_TAG_END ------ End COMPONENT Declaration ------------

begin

-- The following component instantiation code
-- segment was copied from the ram_8x8.vho
-- file generated by coregen and then modified
-- to comply with the rest of the code.

------------- Begin Cut here for INSTANTIATION Template ----- INST_TAG
ram: ram_8x8
                port map (
                        addr => addr,
                        clk => clk,
                        din => din,
                        dout => dout,
                        we => we);
-- INST_TAG_END ------ End INSTANTIATION Template ------------

end coregen;

After this code is saved in a file it can be analyzed by the Synopsys tools.  Analyze
the file using the 'gvan'  or the 'vhdlan'  command.



Page 17

9.   Simulating a design that contains a core component.

In order to simulate a VHDL RTL design, an appropriate VHDL configuration file
must be created.  The .vho file created by Coregen in the project directory contains
the main portion of the code that must appear in the configuration file.

The following configuration file can be used as a template. Notice the code
segments that were copied directly from the ’ram_8x8.vho’  file:

-- Template configuration file
-- needed for simulation of a
-- design with core components

library XILINXCORELIB;
use XILINXCORELIB.all;

configuration virtex_ram_8x8 of coregen_ram_8x8 is

for coregen

-- copy the configuration code excerpt from the
-- .vho file generated by coregen here.

------- Begin Cut here for CONFIGURATION snippet ---- CONF_TAG

-- synopsys translate_off

for all : ram_8x8 use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
                generic map(
                        c_has_en => 0,
                        c_has_din => 1,
                        c_has_limit_data_pitch => 0,
                        c_has_sinit => 0,
                        c_limit_data_pitch => 8,
                        c_width => 8,
                        c_sinit_value => "0",
                        c_addr_width => 3,
                        c_has_rfd => 0,
                        c_has_we => 1,
                        c_depth => 8,
                        c_write_mode => 0,
                        c_pipe_stages => 0,
                        c_has_nd => 0,
                        c_default_data => "0",
                        c_has_default_data => 0,



Page 18

                        c_mem_init_file => "ram_8x8.mif",
                        c_reg_inputs => 0,
                        c_enable_rlocs => 0,
                        c_has_rdy => 0);
        end for;

-- synopsys translate_on

-- CONF_TAG_END ------ End CONFIGURATION snippet ------------

end for;
end;

Pay attention to the line in the code that specifies where the .mif file is located:

c_mem_init_file => "ram_8x8.mif",

This line provides the path to the .mif Memory Initialization File.  Since no full path
to the .mif file is specified, the simulation tool will search in the current directory
(the one where the simulation tool was invoked from) in order to find it. This is why
you need to have a copy of the .mif file in the directory where you invoke the
simulator from. Note that this code line can be edited to contain the full path to the
.mif file.

Once the configuration file is created and analyzed using the 'gvan'  or the
'vhdlan'  command, the VHDL RTL code can be simulated.  Copy the
’ram_8x8.mif’ file from the project directory to the directory where the source
code of the design is and invoke the Synopsys VHDL simulator using the command
'vhdldbx' . For simulation, choose the name of the configuration and not the top
level  entity name (Figure 10).  Simulate as usual. Figure 11 shows the Synopsys
VSS simulator and Figure 12 gives simulation results for our RAM component.



Page 19

Figure 10: Selecting a configuration for simulation.

Figure 11: The Synopsys VSS vhdldbx simulator.



Page 20

10.    Synthesizing a design containing Coregen components towards
a Virtex technology.

The following steps are necessary in order to synthesize towards a Virtex
technology using Synopsys' Design Compiler:

*  target the necessary libraries in the setup file of
   design compiler (.synopsys_dc.setup)
*  prepare a script file with all the
   commands needed by Design Compiler to synthesize.
*  run the script.

The end result of the synthesis process will be an EDIF (Electronic Design
Interchange Format) netlist file (filename extension .sedif) which will be used by the
Xilinx implementation tools.  Note that for the Virtex technology the implementation
tools REQUIRE a netlist in EDIF format; other netlist formats Design Compiler can
create will not be accepted for implementation.

The setup file '.synopsys_dc.setup'  must target the appropriate libraries.
Template dc.setup files for several Xilinx FPGA families can be found at location:

/CMC/tools/xilinx.vM3.1i/synopsys/examples

Figure 12: Some simulation results for our example RAM component.



Page 21

Again, note the possibility that this pathname may change in future updates of the
software.

Below is a sample setup file:

/* =================================================== */
/* Template .synopsys_dc.setup file for Xilinx designs */
/*       For use with Synopsys Design Compiler.        */
/* =================================================== */

/*  This setup file will result in the .db file       */
/*  being represented in terms of GATES and not       */
/*  LUTs                                              */

/* if you want the .db in terms of LUTs               */
/* use the libraries as specified by the              */
/* synlibs xfpga_virtex-4                             */
/* instead of synlibs xdc_virtex-4                    */

/* ================================================= */
/* The Synopsys search path should be set to point   */
/* to the directories that contain the various       */
/* synthesis libraries used by FPGA Compiler during  */
/* synthesis.                                        */
/* ================================================= */

search_path =  {. /CMC/tools/xilinx.vM3.1i/synopsys/libraries/syn \
                /CMC/tools/synopsys/syn/libraries/syn } ;

                /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */
                /* Ensure that your UNIX environment */
                /* includes the two environment var- */
                /* iables: $XILINX (points to the    */
                /* Xilinx installation directory) and*/
                /* $SYNOPSYS (points to the Synopsys */
                /* installation directory.)          */
                /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */

/* ================================================= */
/* Define a work library in the current project dir  */



Page 22

/* to hold temporary files and keep the project area */
/* uncluttered. Note: You must create a subdirectory */
/* in your project directory called WORK.            */
/* ================================================= */

   define_design_lib WORK -path ./Code/Work

bus_extraction_style = "%s<%d:%d>"
bus_naming_style = "%s<%d>"
bus_dimension_separator_style = "><"

hdlin_translate_off_skip_text=true
edifin_lib_logic_1_symbol = "VCC"
edifin_lib_logic_0_symbol = "GND"
edifout_ground_name = "GND"
edifout_ground_pin_name = "G"
edifout_power_name = "VCC"
edifout_power_pin_name = "P"
edifout_netlist_only = "true"
edifout_no_array = "true"
edifout_power_and_ground_representation = "cell"
edifout_write_properties_list = \
{"DUTY_CYCLE_CORRECTION" "INIT_00" "INIT_01" "INIT_02" "INIT_03" \
 "INIT_04"  "INIT_05" "INIT_06" "INIT_07" "INIT_08" "INIT_09" "INIT_0A"\
 "INIT_0B" "INIT_0C" "INIT_0D" "INIT_0E" "INIT_0F" "INIT" "CLKDV_DIVIDE"\
 "IOB" "EQN" "lut_function" "instance_number" "pad_location" "part"}

/* ================================================= */
/* Set the link, target and synthetic library        */
/* variables. Use synlibs (with the -dc switch) to   */
/* determine the link and target library settings.   */
/* You may like to copy this file to your project    */
/* directory, rename it ".synopsys_dc.setup" and     */
/* append the output of synlibs. For example:        */
/* synlibs xdc_virtex-4 >> .synopsys_dc.setup      */
/* ================================================= */

link_library = {xdc_virtex-4.db xdw_virtex.sldb}
target_library = {xdc_virtex-4.db }
symbol_library = {virtex.sdb}
synthetic_library = {xdw_virtex.sldb standard.sldb}
define_design_lib xdw_virtex -path \
/CMC/tools/xilinx.vM3.1i/synopsys/libraries/dw/lib/virtex



Page 23

This file should be located in the directory where the 'dc_shell'  command is be
invoked from and must be named '.synopsys_dc.setup' .

Once the setup file is prepared, a script file with all the necessary commands to the Design
Compiler for the synthesis procedure is needed. The following script file will synthesize the
simple ram8x8 example; it can be used as an example for writing a script file.  A general
template file for synthesis towards a Virtex FPGA can be found in the directory:

/CMC/tools/xilinx.vM3.1i/synopsys/examples

under the name: 'template.fpga.script.virtex' .

/*                                                   */
/*   For general use with VIRTEX architectures.      */
/* ==================================================*/

/* ================================================= */

/*===================================================*/
/* Enable Synopsys to write out top level design name*/
/* as <design_name> instead of synopsys_edif.        */
/*===================================================*/

   designer = "Kostas Vitoroulis"
   company  = "Concordia University"
   part     = "XCV300PQ240-4"

/* ================================================= */
/* Analyze and Elaborate the design file and specify */
/* the design file format.                           */
/* ================================================= */

analyze -format vhdl /project/vlsi/k_vitoro/Synopsys/Code/COREGEN_TESTING/ram_8x8.vhd

                     /* ============================ */
                     /* You must analyze lower-level */
                     /* hierarchy modules here       */
                     /* ============================ */

   elaborate coregen_ram_8x8

/* ================================================= */



Page 24

/* Set the current design to the top level.          */
/* ================================================= */

   current_design coregen_ram_8x8

/* ================================================= */
/* Set the synthesis design constraints.             */
/* ================================================= */

/* uncomment the following line if the design is hierarchical */

/*   uniquify  */

   remove_constraint -all

/*  if your design is sequential, modify the following line */

/*  create_clock clk  -period 5000   */

/* ================================================= */
/* Indicate those ports on the top-level module that */
/* should become chip-level I/O pads. Assign any I/O */
/* attributes or parameters and perform the I/O      */
/* synthesis.                                        */
/* ================================================= */

   set_port_is_pad "*"
   set_pad_type -slewrate HIGH all_outputs()

/* ================================================= */
/* Substitute the required input and output pads for */
/* IBUF and OBUF, respectively in the following two  */
/* lines.                                            */
/* ================================================= */

   set_pad_type -exact IBUF all_inputs()
   set_pad_type -exact OBUF all_outputs()

   insert_pads

/*  ===============================================  */
/*                                                   */
/*  Set don’t touch attributes on any instances      */
/*  which are generated by Coregen                   */



Page 25

/*                                                   */
/*  ===============================================  */

 set_dont_touch ram

/* +++++++++++++++++++++++++++++++++++++++++++++++++ */
/*               Compile the design                  */
/* +++++++++++++++++++++++++++++++++++++++++++++++++ */

   compile -map_effort low

/* ================================================= */
/* Set the part type for the output netlist.         */
/* ================================================= */

/* The following pin specifications are for the XCV300PQ240   chip  */

   set_attribute  coregen_ram_8x8 "part" -type string "XCV300PQ240-4"

   set_attribute "clk" "pad_location" -type string "P3"
   set_attribute "addr<0>" "pad_location" -type string "P4"
   set_attribute "addr<1>" "pad_location" -type string "P6"
   set_attribute "addr<2>" "pad_location" -type string "P7"
   set_attribute "din<0>" "pad_location" -type string "P10"
   set_attribute "din<1>" "pad_location" -type string "P13"
   set_attribute "din<2>" "pad_location" -type string "P17"
   set_attribute "din<3>" "pad_location" -type string "P18"
   set_attribute "din<4>" "pad_location" -type string "P20"
   set_attribute "din<5>" "pad_location" -type string "P21"
   set_attribute "din<6>" "pad_location" -type string "P24"
   set_attribute "din<7>" "pad_location" -type string "P25"
   set_attribute "dout<0>" "pad_location" -type string "P27"
   set_attribute "dout<1>" "pad_location" -type string "P28"
   set_attribute "dout<2>" "pad_location" -type string "P31"
   set_attribute "dout<3>" "pad_location" -type string "P34"
   set_attribute "dout<4>" "pad_location" -type string "P35"
   set_attribute "dout<5>" "pad_location" -type string "P38"
   set_attribute "dout<7>" "pad_location" -type string "P39"
   set_attribute "dout<7>" "pad_location" -type string "P41"
   set_attribute "we" "pad_location" -type string "P42"

/* ================================================= */
/* Save design in EDIF format as <design>.sedif      */
/* ================================================= */



Page 26

write -format edif -hierarchy -output /project/vlsi/k_vitoro/Synopsys/EDIF/coregen_ram_8x8.sedif

   quit
/* ================================================= */
/* Now run the Xilinx design implementation tools.   */
/* ================================================= */

When preparing this file make sure to change all the path names to correspond to files
in your account's directory structure. Specifically the following lines should will mod-
ification:

analyze -format vhdl /project/vlsi/k_vitoro/Synopsys/Code/COREGEN_TESTING/ram_8x8.vhd
write -format edif -hierarchy -output /project/vlsi/k_vitoro/Synopsys/EDIF/coregen_ram_8x8.sedif

Save the file under the name 'ram_8x8.scr'  and execute it using the command:

dc_shell -f (...the path to your script file)

Warnings regarding "unresolved refences" will be generated during the execution of the script
(Figure 13).

This warning implies that Design Compiler was unable to synthesize the component instance
named 'ram' , of type 'ram_8x8' .  Although warnings about unresolved references should
normally be investigated, in this case they can be safely ignored since the Xilinx
implementation tools will have all the information they need to generate the components (This
information will be provided through the EDIF file as it will be discussed later).

Figure 13: The "unresolved refences" warning.



Page 27

It is suggested to have a directory where only script files for the Design Compiler
are kept and then execute the scripts from that location by specifying the full path
name of the file.

The output of the dc_shell  command can be logged to a file by issuing the
following command:

dc_shell -f ram_8x8.scr | tee ram_8x8.log

Here the output of the dc_shell is piped to the 'tee' command which redirects
it to standard output and to the file 'ram_8x8.log' . Once the output is logged it
is easier to find possible errors and warnings that were generated during execution.

At this point the file 'coregen_ram_8x8.sedif'  should exist in the directory
you specified earlier within the script file at line:

write -format edif -hierarchy -output .../coregen_ram_8x8.sedif

This file contains the netlist (in EDIF format) for your synthesized design.  The
netlist will be used in the implementation steps, which are described next.

11.   Implementing a Synthesized design using the Xilinx
implementation tools.

As described in section 5 Coregen creates a set of files when a specified core is
generated.  One of these is an EDIF netlist file, recognized by the '.edn'
filename extension. This file must  be copied to the directory where Synopsys'
Design Compiler has saved the '.sedif' file. Recall that Design Compiler saves
the EDIF netlist when it executes the following line in the script:

write -format edif -hierarchy -output .../coregen_ram_8x8.sedif

(The ellipses stand for your specified directory)

We need to place the two EDIF netlist files in the same directory for the following
reason:   The EDIF netlist generated by the Synopsys Design Compiler   tool does
not contain any information regarding the   implementation of the core (hence the
warning message   regarding unresolved references mentioned near the end of
section 8).  This information will be provided to the Xilinx   implementation tools by
the Coregen generated EDIF (.edn)   file.



Page 28

To proceed with the implementation of the ram_8x8 memory example, locate the
'ram_8x8.edn'  file in the project directory where Coregen created the memory
core component and copy it as 'ram_8x8.sedif'  in the directory where Design
Compiler wrote the file 'coregen_ram_8x8.sedif' .

Run the Xilinx Design Manager using the command 'dsgnmgr&' (Figure 14).

Select 'New Project'  in the file menu.  A new window will appear (Figure 15).

Figure 14: Design Manager’s main window.

Figure 15: New project specifications widow.



Page 29

In the 'Input Design'  field specify the EDIF file
'coregen_ram_8x8.sedif' , generated by Design. In the field 'Work
Directory'  specify a project directory and give the name 'ram_8x8'  to the
project.  In this working directory the Design Manager will create all files which
relate to the project.

Select the 'OK'  button and a new window titled 'New Version'  will displayed
(Figure 16).

In this window choose the 'Select...' button next to the 'Part' text field and
a new window titled ’Part Selector'  will appear (Figure 17).  Use the pull
down menus to specify the target chip for the implementation and select the 'OK'
button.  For the purposes of this tutorial a Virtex XCV300 chip with package type
PQ240 and speed grade 4 is available to you then the 'Part' field will contain the
string 'XCV300-4-PQ240'

Figure 16: Select the target device for implementation.



Page 30

.

Select the 'OK'  button in the 'New Version'  and the Design Manager's main
window will be available to you (Figure 18).

The design can now be implemented by selecting the 'Design' --> 'Implement' menu
option.

Figure 17: Part Selector window.

Figure 18: Ready to implement the design.



Page 31

The 'Flow Engine'  will run in a separate window that displays the separate
steps of the implementation process (Figure 19).

Once the implementation phase is complete, a new window will be displayed.
Select 'Ok'  to close it and in the main window of the 'Design Manager'
notice the item 'rev1(Implented, OK)’  that indicates that the
implementation is complete (Figure 20).  If errors occur refer to the fe.log  file
located in the Xilinx directory project in the subdirectory: .../ver1/rev1

The implementation of the design is now complete and the 'Hardware
Debugger'  tool can be used to download the bit file to the device.

Figure 19: The flow engine window.

Figure 20: Implementation completed without errors.



Page 32

12.   Performing gate level simulation.

RTL simulation can be used to verify the functional correctness of an RTL design
but it cannot guarantee that the design will function correctly after implementation.
This is because RTL simulation does not take into consideration any gate level,
physical timing issues.

Gate level simulation, on the other hand, provides a sufficient indication that an
implemented design will be functional with regards to  timing issues.  To perform
gate level simulation the gate level netlist of the design is needed.  In the gate level
netlist the design is composed of only primitive gate components (hence the name
gate level).  The timing information of each gate is modelled and taken into
consideration during the course of simulation.

The gate level netlist of a design is generated by either the synthesis or the
implementation tools.  In our example we will derive the gate level netlist from the
Xilinx implementation tools. For the Virtex families it is only possible to simulate the
gate level netlist created by the Xilinx implementation.

To derive the gate level netlist for the ram_8x8 example, perform the following
procedure  (the same procedure applies for every Virtex design):  From the main
window of the Xilinx Design Manager, select the 'Options...'  entry of the
'Design'  menu (Figure 21).

Figure 21: Preparing for Gate Level Simulation.



Page 33

A new window titled Options  will appear (Figure 22).

In the Programs Options  section, select VSS in the drop menu titled
Simulation  and then press in the corresponding Edit Options  button.

Figure 22: Setting up the options for the Synopsys’ VSS simulator

a)   The ’general’ tab

Figure 23: The options for the gate level netlist of the
design that will be generated by the tool.



Page 34

Another window will show (Figure 23) with the options separated three in tab forms.

b)   The ’VHDL/Verilog’ tab

c)   The ’EDIF’ tab.

Figure 23: The options for the gate level netlist of the
design that will be generated by the tool.



Page 35

Select the 'General'  tab, and specify the following:

Simulation Data Options:  VHDL
Correlate Simulation Data to Input Design:
           check the button on the left
Simulation Netlist Name:ram_8x8_glvl

The first setting will cause the gate level code to be in VHDL, the second setting will
make the gate level entity names consistent with that of the original design and the
third setting specifies the filename of the gate level code (no extension needed; it
will be added).

Then select the VHDL/Verilog tab and check the entry 'Rename Architecture
Name To:' . Leave the name 'STRUCTURE' in the textfield (of course any name
could be chosen).  Press the 'OK'  button.  Press the 'OK'  Button in the
'Options'  window also and in the main window of the Xilinx Design Manager,
select the 'Design' --> 'Implement'  Option.  The flow engine will be run
once again but this time the gate level netlist will be written.

The gate level netlist file will be located in the ram_8x8 project directory:

.../ram_8x8/ver1/rev1/ram_8x8_glvl.vhd

In order to perform the gate level simulation, a configuration for the gate level code
must be created.  Then the design in ’ram_8x8_glvl.vhd’ and its
configuration can be analyzed and simulated.

Locate the 'ram_8x8_glvl.vhd'  and view its contents.  Note the three
entity/architecture pairs , namely ROC/ROC_V, TOC/TOC_V and
COREGEN_RAM_8X8/STRUCTURE. Also notice the libraries declared before each
entity.  The location of these libraries must be specified in the setup file
'.synopsys_vss.setup'.  Below is an example of a '.synopsys_vss.setup' file that
includes these libraries, among others:

WORK > DEFAULT
DEFAULT: ./Work
TIMEBASE = PS
LOGIBLOX : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/logiblox
SIMPRIM : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/simprims
UNISIM : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/unisims
XDW : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/xdw
XILINXCORELIB : /CMC/tools/xilinx.vM3.1i/synopsys/libraries/sim/lib/xilinxcorelib



Page 36

Note the TIMEBASE=PS setting which sets the time base in picoseconds, the
reason being that the simulations libraries have delay values specified in units of
picoseconds.

The configuration file needed by the simulation tools will specify which ROC/ROC_V
and TOC/TOC_V pairs will be used. A template configuration file follows:

-- "SYNOPSYS_EDIF" will be the name of the entity
-- for the gate level code produced by Xilinx Design Manager
-- if it was not specified that the tool should following
-- the naming patterns of the original design.

-- "STRUCTURE", in a similar fashion, will be the name of the
-- corresponding architecture if the Xilinx implementation
-- tools were not told to following the naming conventions
-- of the original design.

library UNISIM;
library SIMPRIM;
library XDW;

configuration ram_8x8_glvl_virtex_CONFIG of COREGEN_RAM_8X8 is
for STRUCTURE
-- if one of the ROC or TOC entities does not appear in
-- you gate level code, comment out the corresponding line.

for ROC_NGD2VHDL : ROC use entity WORK.ROC(ROC_V);
end for;

for TOC_NGD2VHDL : TOC use entity WORK.TOC(TOC_V);
end for;

-- use defaults for everything else found in
-- libraries defined in the .synopsys_vss.setup file
-- found in this directory

end for;
end ram_8x8_glvl_virtex_CONFIG;

In order to perform the gate level simulation copy both the configuration file and the
gate level code file in the same directory, analyze them (in the order: gate level,
configuration) and simulate the entity architecture pair derived from the
configuration file.



Page 37

APPENDIX:

Directory structure.

A well maintained computer account MUST have a proper directory structure.  Lack
of organization will only cause confusion and chaos in one's work.  This applies
especially when working with sophisticated software tools that need a large number
of files like the Synopsys and Xilinx tools.

The general rule that applies when a directory structure for software tools is created
is to have different directories groups of similar files.

The following is an efficient directory structure for the Synopsys and Xilinx tools:

Synopsys
   |
   |-xilinx
   |
   |-coregen
   |
   |-EDIF
   |
   |-Scripts
   |
   |-Code
   |   |
   |   |-Work
   |
   |
   |-PostSynthesisCode
   |   |
   |   |-Work
   |

The Synopsys directory is the main directory and contains everything else.  The
environment files for Synopsys and Xilinx (synopsys_2000.env, xilinx.vM3.1i.env)
and the .synopsys_dc.setup file can be placed here. The dc_shell command can be
executed from this directory to execute scripts:

dc_shell -f ./Scripts/script_name.scr



Page 38

The xilinx directory is where all projects created with xilinx can be saved.

The coregen directory is where all projects created with Coregen can be saved.

The Code directory is where the RTL VHDL code can be saved.  The
.synopsys_vss.setup file would exist in this directory.  Also the simulator would be
invoked from here.

The PostSynthesisCode directory can be used to store the derived gate level code
of a design. Another .synopsys_vss.setup file would live here. The simulator would
be invoked from here for gate level simulation.

The Work directories seen in Code and PostSynthesisCode directories are used to
store intermediate files for the Synopsys tools.  The .synopsys_vss.setup file
specifies the Work directory as the working directory for the Synopsys tools.



Page 39

 Summary of steps.

The following is a summary of all the steps followed in this tutorial for the creation,
simulation, synthesis/implementation and gate level simulation of the ram_8x8
example.

1) Run Coregen and generate the core(s) you intend to use in your design.

 2) Write the VHDL RTL design using the generated core components as VHDL
components

3) To simulate, create the necessary configuration files.  The Coregen    generated
.vho contains segments of code that need to be included in your configuration file.
Your .synopsys_vss.setup file should specify    the location of the XILINXCORELIB
on the system.

4) Synthesize as usual using the appropriate dc_shell script and the
.synopsys_dc.setup file that targets your available Virtex device.    Make sure that
the netlist produced from synthesis is in EDIF format    (use .sedif as extension).

5) Copy the EDIF file for the core that was generated by Coregen to the same
location where your design's EDIF was written.  Change the extension from    .edn
to .sedif

6) Run the Xilinx implementation tools.

7) If you wish to perform gate level simulation, specify to the Xilinx    tools to
generate a VHDL gate level code of the design.  Then    generate the appropriate
configuration file for the gate level code and    proceed simulating.


