
Synplify DSP User Guide, February 2009 8-1

C H A P T E R 8

Synplify DSP FPGA Tutorial

This tutorial gives you a quick introduction to working with the Synplify® DSP
software for FPGA technologies. It shows you how the Synplify DSP product
bridges the technology gap between MathWorks Simulink and the FPGA
synthesis product line from Synopsys.

The following topics first describe the flow and then describe the stages in the
Synplify DSP FPGA tutorial:

• Tutorial Design Flow, on page 8-2

• Create Algorithm Models, on page 8-3

• Set up for Verification, on page 8-11

• Analyze and Simulate, on page 8-15

• Synthesize Optimized Architectures, on page 8-24

• Verify RTL, on page 8-29

• Run Logic Synthesis, on page 8-29

• Refine Optimizations, on page 8-31

LO

 Synplify DSP FPGA Tutorial Tutorial Design Flow

8-2 Synplify DSP User Guide, February 2009

Tutorial Design Flow
This tutorial follows the flow for an FPGA DSP design, from algorithm concept
to FPGA implementation, using the Synplify DSP software and the Synplify
Pro software for synthesis. The tutorial follows an example that has already
been set up, describing the steps along the way. It is created for the FPGA
Actel, Altera, Lattice, and Xilinx technologies. If you are targeting another
FPGA vendor, you can follow the sequence of the flow to familiarize yourself
with it.

Define the design that needs to be implemented,
the interface, and a test infrastructure.

 Add stimuli and analysis components.

 Verify that the model works, while ignoring finite
word length effects.

Determine a good optimization strategy based on
area and physical performance requirements.

Perform regression verification checks of the RTL
created in the previous step.

Use Synplify Pro to synthesize the RTL created
with Synplify DSP.

Create Algorithm Models

Refine Optimizations

Set up for Verification

Synthesize Optimized
Architectures

Verify RTL

Run Logic Synthesis

Analyze and Simulate

Fine-tune optimizations, based on area and
physical performance requirements.

ALGORITHM MODELLING AND VERIFICATION

DSP SYNTHESIS

LOGIC SYNTHESIS

Explore Quantization
Effects

Define and simulate the fixed-point characteristics
of the algorithm; analyze overflow effects.

Create Algorithm Models Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-3

Create Algorithm Models
The design used in this tutorial is a simple, low-pass FIR filter. In this design
capture stage, you use Synplify DSP blocks to capture the functionality that
must be implemented in FPGA hardware. To capture a Synplify DSP design,
there are two simple rules:

• The design must be bounded by Synplify DSP blocks. It must have a
Synplify DSP Port In block for each input and a Synplify DSP Port Out
block for each output.

• Use the Synplify DSP blockset to implement your algorithm behavior.
Any functionality that is to be implemented in hardware must be instan-
tiated from the Synplify DSP blockset.

This section describes these stages:

• Start the Demo Tutorial, on page 8-3

• Add Port In and Port Out Blocks, on page 8-5

• Add the FIR Block, on page 8-7

Start the Demo Tutorial
This tutorial uses the FIR example from the demos directory. The example has
already been set up, so the tutorial describes the steps that are automatically
implemented in the example.

To follow along and open this example, do the following:

1. Start the demo tutorial:

– From the MATLAB window, select Help->Demos.

– Go to Synplify DSP->Tutorials

– Double-click FIR Tutorial.

LO

 Synplify DSP FPGA Tutorial Create Algorithm Models

8-4 Synplify DSP User Guide, February 2009

2. If required, specify the path to the Synplify Pro executable in the dialog
box that opens.

The tutorial looks for the Synplify Pro executable in the default installa-
tion folder. You only need to specify the path to the executable if it does
not find it at the default location.

3. Select the FPGA target architecture when you are prompted.

This tutorial follows an Actel target, and the dialog box settings and
examples reflect this. If you choose one of the other three vendors, some
settings might be different. You can still run through the sequence in
the tutorial and get comfortable with the design flow, even if you are not
using any of these four vendors.

The demo tutorial opens with two windows.

Create Algorithm Models Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-5

Add Port In and Port Out Blocks
When you start the demo, two windows open:

• The model window with the first screen of the demo tutorial

• A dialog box for port parameters

The following describes the sequence of steps that was run automatically. If
you are working on your own design, you would do these steps manually.

1. The demo first instantiates the Synplify DSP Port In and Port Out blocks
from the Synplify DSP Ports & Subsystems library.

The model window shows the Synplify DSP Port In and Port Out blocks
instantiated as x and y, respectively. Putting in these blocks satisfies the
first rule for Synplify DSP design (see Create Algorithm Models, on
page 8-3), which is to bound the design with these two blocks.

LO

 Synplify DSP FPGA Tutorial Create Algorithm Models

8-6 Synplify DSP User Guide, February 2009

2. Set parameters for the Port In block.

The parameters that were set automatically are displayed in the open
dialog box. Notice the settings for Word length and Sample time as displayed
in the dialog box. The value of the settings might vary slightly,
depending on the FPGA technology you selected. The following figure
shows the Actel parameters.

3. Go to the next screen.

– Close the dialog box.

– Double-click Next in the model window to go to the next stage of the
design, which is to add the FIR block.

Create Algorithm Models Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-7

Add the FIR Block
When you double-click Next, three things happen:

• The model window is updated to include new blocks, including the FIR.

• A dialog box opens with parameters for the FIR.

• A FIR specification toolbox window opens.

The following describes these steps that the demo runs automatically.

1. The demo automatically instantiates the following blocks:

– The FIR block from the Synplify DSP DSP FIltering library, which it
names FIR Low Pass Filter.

– The Synplify DSP FDATool block, which it renames FIR Specification.

2. The demo sets parameters for the FIR Low Pass Filter block. In particular,
note the following settings:

Coefficients The syn_get_coefficients function in this field specifies
that the tool use the coefficients set in the FIR
Specification (FDATool) block. Alternatively you can use
a MATLAB vector variable.

Coefficient word length This sets the precision of the coefficient quantization.

Data path format and
Output format

This selects the precision of the internal format.

LO

 Synplify DSP FPGA Tutorial Create Algorithm Models

8-8 Synplify DSP User Guide, February 2009

3. Next, the demo defines the FIR coefficients with the FIR Specification
(FDATool) block and the MathWorks Filter Design and Analysis Tool. Note the
following settings in the MathWorks tool window:

– Order: The default is 50.

– Frequency specifications wpass and wstop

– Magnitude specification: astop

This sets full-precision FIR coefficients. The FIR block quantizes these
coefficients. The FIR block icon reflects the settings, showing a 50th
order FIR filter with 51 taps, because the number of coefficients (taps)
specified was 50.

Create Algorithm Models Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-9

4. To view the results, do the following:

– In the FIR parameters dialog box, click Show Impact of Quantization.
Another window opens and shows how the quantized coefficient
compares to the full coefficient.

The quantization of a signal is determined by the quantization
propagated from input signals. Each block in the Synplify DSP
blockset calculates the quantization of the outputs based on
block-specific rules and the quantization on the inputs. You can also
manage the quantization of a signal directly with a block cast
operation inside the block.

LO

 Synplify DSP FPGA Tutorial Create Algorithm Models

8-10 Synplify DSP User Guide, February 2009

– To view the propagation of parameters, select Format->Port/Signal
Displays in the model window, and enable the following to configure
the display: Sample Time Colors, Port Data Types, and Signal Dimensions.

5. Go to the next screen by closing the dialog boxes and tool windows and
double-clicking Next in the model window.

Set up for Verification Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-11

Set up for Verification
In this stage, the demo adds Simulink stimuli and analysis components to
the schematic to verify the model.

• Add Stimuli Components, on page 8-11

• Add Analysis Components, on page 8-12

Add Stimuli Components
The demo automatically runs the following steps.

1. It creates low and high frequency signals to the input (x) of the algorithm.
You see the following:

– The demo automatically adds two instances of the
Simulink->Sources->Sine Wave block to the design schematic to generate
sine waves. The demo names them Low Frequency and High Frequency.

– It adds a Simulink->Math Operations->Sum block to the design. Note how
the blocks are connected to the x input.

LO

 Synplify DSP FPGA Tutorial Set up for Verification

8-12 Synplify DSP User Guide, February 2009

2.The demo than sets sine wave block parameters. Check the dialog boxes
of the Low Frequency and High Frequency blocks, and note the settings for
the following:

– Amplitude

– Frequency

3. Close the Low Frequency and High Frequency source blocks.

Add Analysis Components
By default, Simulink does not store the data and you must explicitly set up
scopes to store the data for subsequent plotting as described below.Set up
the design to store data and analyze the simulation results in the time
domain. For this tutorial, these steps have been run automatically, and the
model window shows the finished results.

1. The demo automatically adds two instances of the Simulink->Sinks->Scope
block for time domain analysis. The scopes are named x Time and y Time.
The model window shows the following:

Set up for Verification Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-13

– Note how they are connected to the input and output of the FIR
instance.

2. The demo sets scope parameters. You can view the settings by doing the
following:

– Double-click the x Time scope to open the scope window. Click the
Parameters icon to open the x Time parameters dialog box. Note that Data
History->Limit data points to last has been disabled.

– Repeat the previous step for the y Time scope.

– Close the scope windows.

3. The demo automatically adds two instances of the Signal Processing
Blockset->Signal Processing Sinks->Spectrum Scope block for frequency
domain analysis.

– In the demo, the scopes are named x Frequency and y Frequency.

– Note how they are connected to the input and output of the FIR.

LO

 Synplify DSP FPGA Tutorial Set up for Verification

8-14 Synplify DSP User Guide, February 2009

4. View the settings for the spectrum scopes.

– Double-click x Frequency and y Frequency.

– Note that the buffer size is set to accommodate a 128-word signal for
the FFT frame (Buffer Input is enabled, and Buffer size is set to 128). The
following shows the settings in the x Frequency dialog box.

Analyze and Simulate Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-15

5. Close the dialog boxes for the scopes.

Analyze and Simulate
1. The demo instantiates SynFixPtTool from the Synplify DSP Blockset to

manage fixed-point settings.

Note that the demo renames the block Fixed Point Management. This block
instantiates the library path. It lets you explore quantization by
overriding the different blocks in the design with floating-point settings
and events.

LO

 Synplify DSP FPGA Tutorial Analyze and Simulate

8-16 Synplify DSP User Guide, February 2009

2. View the settings by double-clicking Fixed Point Management to open the
Simulink Fixed-Point Settings toolbox. This toolbox provides control over
the accuracy for individual levels or blocks in a hierarchy. Note the
following settings:

– Select Current System is set to tutorial_fir, because this is a small design
and so that the settings apply to all blocks.

– Logging mode is set to Use local settings.

– Data type override is set to Use local settings.

– Close the window.

Note: Overflow logging is only supported with MATLAB 2008A and
later; it is not supported with MATLAB 2007A or 2007B.

TheMATLAB interface varies, depending on which version you are using.
The following shows the relevant portion of the toolbox as it appears in
MATLAB 2007B:

Analyze and Simulate Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-17

LO

 Synplify DSP FPGA Tutorial Analyze and Simulate

8-18 Synplify DSP User Guide, February 2009

The following shows the MATLAB 2008A toolbox:

3. Click the right arrow in the toolbar of the model window to simulate the
design with the fixed-point settings.

You get the results shown below. The input scope (x Frequency) shows low
and high frequency spikes. For y Frequency, the high frequency has been
filtered.

4. Double-click x Time and y Time and view the waveforms.

Analyze and Simulate Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-19

The input (x) scope shows a low-frequency signal superimposed on a
high-frequency carrier, and the output scope shows the filtered
low-frequency signal.

5. Close the toolbox window and scopes, and double-click Next in the model
window.

LO

 Synplify DSP FPGA Tutorial Explore Quantization Effects

8-20 Synplify DSP User Guide, February 2009

Explore Quantization Effects
The following describes how the demo analyzes quantization effects, using
floating-point simulation.

• Running Floating-Point Simulation, on page 8-20

• Analyzing the Impact of Quantization, on page 8-21

Running Floating-Point Simulation
When you click Next, the following are displayed:

• The Fixed-Point Settings toolbox reopens with new settings.

• The scopes reopen with new data.

The demo automatically overrides the fixed-point settings with the
floating-point format. Using floating-point settings ensures that simulation
validates the algorithm with full-accuracy calculations. The Synplify DSP tool
makes it easy to do this without changing your design by allowing the
Simulink floating-point override to propagate through the design subsystems
automatically. The following description describes how the demo overrides
the original settings with the floating-point format.

1. In the Fixed-Point Settings toolbox, note the following:

– Data type override is set to Scaled Doubles.

– Logging Mode is set to Overflow Only (MATLAB 2008A and 2008B only).
This mode is not supported in MATLAB 2007A or 2007B.

This removes quantization and lets you verify the algorithm. You can
use this technique to identify quantization effects. Logging the overflow
events also lets you explore the effects of quantization.

2. View the results.

– The demo shows the scope results after a full-accuracy simulation. It
runs full floating-point simulation, overriding the previous fixed-point
settings. The spectrum scope waveforms have one waveform
superimposed over the other. If the spectrum waveforms exceed the
graphs, use Axes->Autoscale to fit them.

Explore Quantization Effects Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-21

– The demo shows the following result for the time domain scopes:.

3. Double-click Next.

Analyzing the Impact of Quantization
When you double-click Next after the demo runs floating-point simulation, the
following changes occur:

• The FIR dialog box opens with new settings.

• The Fixed-Point Settings toolbox displays new settings.

• The input and output frequency scopes are updated with new data.

LO

 Synplify DSP FPGA Tutorial Explore Quantization Effects

8-22 Synplify DSP User Guide, February 2009

• The input and output time scopes show new data.

At this point, the demo deliberately “breaks” the algorithm. This lets you see
the process used to analyze the effect of quantization and isolate any
problems that might occur. The following steps describe the process.

1. In the FIR dialog box, note the following changes:

– Coefficient fraction length is reduced.

– Output word length has changed.

– Output fraction length has changed.

These settings help isolate and analyze quantization problems by delib-
erately breaking the algorithm.

2. In the Fixed-Point Settings toolbox, note the following changes:

– Logging Mode is set to Overflow Only an d the amount of overflow is
logged. This mode is not supported in MATLAB 2007A or 2007B.

– Data type override is set to Use Local Settings.

3. Check the results.

– The time scopes show how the quantization affects the output.

– The frequency scopes reflect similar results.

LO

 Synplify DSP FPGA Tutorial Synthesize Optimized Architectures

8-26 Synplify DSP User Guide, February 2009

The demo does this automatically and displays a window, customized
for the target technology you chose at the beginning of the tutorial. The
following figure shows the window with an Actel target.

It also shows three implementations (Baseline, Folding, and Retiming) it has
created. Each implementation explores different optimization strategies
for the same design and stores it in a separate implementation. The
implementation is a subdirectory, parallel with the .mdl file associated
with the design, and contains any files generated for that particular
implementation. The following steps describe the process that the demo
ran through automatically.

3. The demo first set up the implementation and implementation options.
You can review the steps by doing the following.

– Select BASELINE and then click Edit Implementation. If you were trying to
create a new implementation, you would click New Implementation.
Either of these actions opens the Implementation Options dialog box,
where you can set options specific to that implementation.

– Check the settings. The following shows the settings for the Actel
demo, so an Actel part and technology is selected on the Target Options

Explore Quantization Effects Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-23

4. Plot and compare the waveforms. In MATLAB 2008A, you have to store
the signals as reference signals to compare them.

– Check the plotted waveforms.

LO

 Synplify DSP FPGA Tutorial Synthesize Optimized Architectures

8-24 Synplify DSP User Guide, February 2009

5. Double-click Next.

Synthesize Optimized Architectures
For more information about the next stages in the flow, see the following:

• Run DSP Synthesis, on page 8-25

• Verify RTL, on page 8-29
The tutorial skips this optional step, but you can refer to Verifying the
RTL with a Test Bench, on page 2-76 for a detailed procedure.

Synthesize Optimized Architectures Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-25

Run DSP Synthesis
When you double-click Next after exploring quantization effects, the demo
resets the fixed-point settings and runs synthesis. You see the following
changes:

• The model window now includes the SynDSPTool block.

• The Synplify DSP FPGA window (for DSP synthesis) is open.

• The Synplify Pro UI (for logic synthesis) is open.

You manage optimization strategies with the SynDSPTool block. The following
steps describes how the demo instantiates and uses this block and then runs
DSP synthesis.

1. The model window shows an instance of the SynDSPTool block from the
top-level Synplify DSP library. In the demo, it is renamed Implementation
Management.

2. Double-clicking Implementation Management opens the Synplify DSP FPGA
window.

Synthesize Optimized Architectures Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-27

tab. The selected target is also reflected in the Synplify DSP window,
just above the implementations.

– Check the settings on the other tabs:

LO

 Synplify DSP FPGA Tutorial Synthesize Optimized Architectures

8-28 Synplify DSP User Guide, February 2009

– Click Cancel to close the dialog box.

– Return to the Synplify DSP window and note that no optimizations,
like retiming and folding, have been enabled for this implementation.

The other implementations have different settings, which we will
explore later. The details are described in Refine Optimizations, on
page 8-31.

4. Next, the demo automatically runs DSP synthesis and generates output
files. You do not need to do this because this has already been done, but
to replicate this step manually, you would select BASELINE in the
Synplify DSP window and click Run.

5. Click View Log in the Synplify DSP FPGA window to see a summary of the
DSP synthesis run. Close the log window.

The next step, to verify the RTL, is optional, and this tutorial does not do
this, but goes on to logic synthesis (Run Logic Synthesis, on page 8-29).

LO

 Synplify DSP FPGA Tutorial Run Logic Synthesis

8-30 Synplify DSP User Guide, February 2009

2. View the implementation.

– Open the RTL view by clicking on the icon.

Target

Result Summary

Implementation

Target
Frequency

Run Logic Synthesis Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-29

Verify RTL
This is an optional step, and the demo does not include it. For a detailed
procedure for verifying the RTL, see Verifying the RTL with a Test Bench, on
page 2-76.

Run Logic Synthesis
After DSP synthesis, the demo automatically starts Synplify Pro and runs
logic synthesis on the design. It displays the Synplify Pro window with the
three implementations and their results. This section walks through the
procedure step-by-step, using the BASELINE implementation.

As a result of DSP synthesis, the following files are generated for logic
synthesis in the <design_implementation>/vhdl or verilog subdirectory:

1. The demo automatically ran Synplify Pro. Examine the results of logic
synthesis for the BASELINE implementation by doing the following:

– In the Synplify Pro project window, select the BASELINE
implementation.

– Note that logic synthesis was run with the same FPGA target you
selected. This figure shows an Actel implementation.

File Description

<design>.sdc Synopsys FPGA Design Constraints generated for the design.

<design>.prj Synopsys Project File generated for the design.

<design>.vhd or .v The RTL associated with the design.

Refine Optimizations Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-31

– Push down into the FIR module by clicking the icon and
selecting the FIR. View the implemented architecture.

The structure reflects a transposed implementation of the FIR filter:
the input goes to different multipliers with each multiplier feeding two
different adders (this is a linear phase filter with symmetric
coefficients , and the identical coefficients share a multiplier). The
adders are registered and accumulated for the final result.

– Close the RTL view.

3. Return to the main Synplify Pro window and check the results summary
in the Log Watch window at the lower right. Compare the results to the
target frequency.

Note that the results documented here may vary from your results if you
used another target or another version of Synplify Pro. The other imple-
mentations in the demo illustrate how you can use Synplify DSP optimi-
zations to produce better logic synthesis results. See Refine Optimiza-
tions, on page 8-31for details.

Refine Optimizations
The demo uses the other implementations to illustrate optimization strate-
gies. In your design cycle, you can iterate with different implementations to
fine-tune your design or try out different options and strategies.

LO

 Synplify DSP FPGA Tutorial Refine Optimizations

8-32 Synplify DSP User Guide, February 2009

This section describes the optimization strategies available and then walks
you through using some techniques to improve performance and area optimi-
zation in the tutorial design:

• Optimization Strategies, on page 8-32

• Using Retiming for Performance, on page 8-33

• Using Folding to Decrease Area, on page 8-34

Optimization Strategies
The Synplify DSP software offers the following optimization strategies:

• Retiming
Moves existing registers from non-critical to critical performance situa-
tions. Optional extra latency for the complete block adds extra register
resources for pipeline insertion. The tutorial illustrates this technique in
Using Retiming for Performance, on page 8-33.

• Multi-Channelization
Multiple data streams share hardware for area optimization. This
strategy requires the physical clock for the implementation to accommo-
date a clock rate equivalent to the sample rate of the individual data
streams multiplied by the number of streams sharing the hardware. The
tutorial does not illustrate this, but you can refer to Optimizing with
Multichannelization, on page 2-70.

• Folding
A single data stream shares hardware for area optimization. This
strategy requires the physical clock for the implementation to accommo-
date a clock rate equivalent to the sample rate of the data stream multi-
plied by the requested folding factor. Folding requires retiming (to bring
registers to the folding boundaries). The tutorial illustrates this
technique in Using Folding to Decrease Area, on page 8-34.

Refine Optimizations Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-33

Using Retiming for Performance
The following procedure shows you how the demo used retiming to improve
performance. It automatically created an implementation called RETIMNG

1. Return to the Synplify DSP window and select the RETIMNG
implementation.

2. Note the following:

– The RETIMING option is set. The following figure shows the Actel
implementation.

– Click View Log and check the file. You see that DSP synthesis was run
with this option on and the specified number of latency cycles.

LO

 Synplify DSP FPGA Tutorial Refine Optimizations

8-34 Synplify DSP User Guide, February 2009

3. Go to the Synplify Pro view and select the Retiming implementation in
that window.

The window is updated with the relevant data after the logic synthesis
run for this implementation.

4. Check the following:

– Check the Log Watch window in the lower right. You see that timing
frequency has improved from the BASELINE implementation.

– When you examine the architecture in the RTL view (see Run Logic
Synthesis, on page 8-29 for details), you see that the structure still
reflects a direct-form, transposed implementation of the FIR filter.
The input of the filter and the outputs of the multipliers are now all
registered, and this results in improved timing performance.

Using Folding to Decrease Area
To deal with area challenges, use folding. Folding executes the hardware with
the physical clock running at a multiple of the sample clock.

1. Return to the Synplify DSP window and select the FOLDING
implementation. The following figure shows the Actel implementation.

LO

 Synplify DSP FPGA Tutorial Refine Optimizations

8-36 Synplify DSP User Guide, February 2009

– When you check the Log Watch window in the lower right, you see that
the resources (number of cells) has been significantly reduced,
compared to the BASELINE and FOLDING implementations.

– When you examine the architecture in the RTL view (see Run Logic
Synthesis, on page 8-29 for details), you see that the structure still
reflects a direct-form, transposed implementation of the FIR filter, but
it now includes a counter, to manage the multiplexers over the
shared resources.

This illustrates how resources are shared and implemented efficiently by
the folding optimization. You can see the addressing logic for the coeffi-
cient ROM and the input RAM data storage. With this optimized archi-
tecture, not only does the design meet the target performance, but the
area is substantially reduced too.

Now that you have completed the tutorial, you are familiar with the
design flow, and can use Synplify DSP for your own designs.

Refine Optimizations Synplify DSP FPGA Tutorial

Synplify DSP User Guide, February 2009 8-35

2. Note the following:

– The Retiming and Folding options are both enabled. Selecting Folding
automatically enables Retiming.

– Click View Log and check the file. You see that DSP synthesis was run
with a folding factor of 51. This specifies that the physical clock can
run 51 times faster than the sample clock to enable resource sharing.

3. Go to the Synplify Pro view and select the Folding implementation in that
window.

The window is updated with the relevant data after the logic synthesis
run for this implementation.

4. Check the following:

	Synplify DSP User Guide

	Disclaimer of Warranty
	Copyright Notice
	Trademarks
	Restricted Rights Legend
	Software License and Maintenance Agreement

	Getting Started
	Introduction to The Synplify�DSP Tool
	About the Software
	Synplify DSP ASIC Edition
	Assumptions
	Advantages of Synplify�DSP

	Synplify�DSP Design Flows
	Synplify�DSP FPGA Design Flow
	Design Requirements for RTL Generation
	FPGA Design Flow Procedure
	Synplify�DSP ASIC Design Flow
	ASIC Design Flow Procedure

	Finding Information
	Getting Help

	Using Synplify DSP for DSP Design
	Configuring Synplify�DSP for Optimal Use
	Configuring Settings for Simulink Simulation
	Configuring Synplify�DSP Timing Modes for FPGAs
	Setting Default Display Modes

	Basic Procedures
	Starting a Synplify�DSP Design
	Working with Synplify�DSP Blocks

	Defining Clocks and Resets
	Specifying a Clock_reset Module
	Defining Reset Signals

	Designing Filters
	Implementing FIR Filters
	Implementing Polyphase FIR Filters
	Defining FIR Filter Coefficients with FDATool
	Implementing IIR Filters
	Defining IIR Filter Coefficients with FDATool

	Working with Vectors
	Creating Vector Signals
	Using Math Operations on Vector Signals

	Specifying ROM Data with syn_read_hex
	Using Black Boxes and Third-Party IP
	Integrating Black Boxes in the Design
	Setting Black Box Parameters
	Configuring a Black Box - Example
	Using Optimizations with Black Boxes

	Managing Subsystems and Hierarchy
	Using Quantization Analysis Tools
	Specifying Fixed-Point Options
	Validating Algorithms with the Fixed-Point Toolbox
	Using Plots

	Using Smart Black Boxes for Cosimulation
	Incorporating Smart Black Boxes in the Design
	Configuring the Cosimulation Interface
	Creating Smart Black Box Configuration Files
	About Cosimulation with ModelSim

	Setting Options for an Implementation
	Setting up Implementations
	Resolving Read/Write Conflicts in FPGA RAMs
	Extracting RAMs for ASIC Designs
	Including Comments in the Generated RTL
	Keeping Signal Names in Generated RTL

	Running DSP Synthesis with SynDSPTool
	Optimizing with Retiming
	Using Automatic Gate-level Retiming
	Optimizing with Folding
	Optimizing with Multichannelization
	Running DSP Synthesis for FPGA Targets
	Running DSP Synthesis for ASIC Targets

	Using syndspbatch for Batch Mode
	Verifying the RTL with a Test Bench
	Working with the Output for FPGA Designs
	Running Logic Synthesis for FPGA Targets
	Working with the Actel Encrypted Flow
	Exporting Xilinx System Generator Black Boxes

	Working with the Output for ASIC Designs
	Output Files for ASIC Designs
	Running ASIC Logic Synthesis
	Working with ASIC Output Tcl Files

	Synplify DSP Underlying Concepts
	Clock Domains
	Resets in Synplify�DSP
	Global and Local Resets
	Synchronous and Asynchronous Resets
	Reset Implementation in RTL Code
	Resets and RTL Testbenches

	Clock and Reset Management
	Clock_reset Module Interface
	Reset Functionality with the Clock_reset Module
	Clock Functionality with the Clock_reset Module
	Clock/Reset Circuitry Files
	Clock_reset Module Limitations
	Log File Messages for the Clock_reset Module

	Data Types
	Fixed-Point and Floating-Point Representation
	Synplify�DSP Data Type Implementation
	Fixed-Point Data Type
	Data Type Casting: Setting the Output Data Type

	CORDIC Algorithms
	CORDIC Definitions
	Unified CORDIC Applications

	Multi-Rate Design
	Sample Rate Terminology
	Clock Generation and Clock Reset
	Polyphase Filtering

	Hierarchy Preservation
	Subsystem Consolidation
	Block Consolidation
	Constant Propagation
	RAM Extraction in ASIC Designs

	Working with Custom Blocks
	Primitives and Custom Blocks
	Design Flow for Building Custom Blocks
	Set up a Custom Library
	Create a Custom Block
	Define Basic Content for Custom Blocks
	Define Content for Parameterized Blocks
	Define Content for Reconfigurable Blocks
	Designing with Custom Blocks
	Maintaining Custom Libraries
	Maintaining Independent Custom Libraries
	Converting Custom Libraries

	The MySign M-Generator

	Using M Control Blocks
	Using M Control Blocks
	Using M Control Blocks in Synplify�DSP Designs

	Tips for Designing with M Control Blocks
	Coding M Control Blocks
	Ports and Timing
	M Control Block Data Types
	Combinatorial Logic
	States with Persistent Variables
	Precision Bounds for Persistent Variables
	State Machines
	Counters
	User-Defined Functions
	Overridable Parameters

	M Language Support
	Keywords, Variables, Functions, and Structures
	Operator Support
	Built-In Function Support
	Synplify DSP Functions
	M Language Limitations

	Synplify�DSP Blockset
	Blocks — By Library
	Communications
	Control Logic
	CORDIC
	DSP Basics
	Filtering
	Math Functions
	Memories
	Ports & Subsystems
	Signal Operations
	Sources
	Transforms

	Blocks — Alphabetical List
	Synplify�DSP Abs
	Synplify�DSP Accumulator
	Synplify�DSP Add
	Synplify�DSP Binary Logic
	Synplify�DSP Black Box
	Synplify�DSP Block Deinterleaver
	Synplify�DSP Block Interleaver
	Synplify�DSP CIC
	Synplify�DSP Commutator
	Synplify�DSP Comparator
	Synplify�DSP Concat
	Synplify�DSP Constant
	Synplify�DSP Convert
	Synplify�DSP Convolutional Deinterleaver
	Synplify�DSP Convolutional Encoder
	Synplify�DSP Convolutional Interleaver
	Synplify�DSP CORDIC Exp
	Synplify�DSP CORDIC Log
	Synplify�DSP CORDIC Polar
	Synplify�DSP CORDIC Rotator
	Synplify�DSP CORDIC SinCos
	Synplify�DSP CORDIC Sqrt
	Synplify�DSP Counter
	Synplify�DSP DDS
	Synplify�DSP Decommutator
	Synplify�DSP Delay
	Synplify�DSP Demux
	Synplify�DSP Depuncture
	Synplify�DSP Differentiator
	Synplify�DSP DivMod
	Synplify�DSP Downsample
	Synplify�DSP Extract
	Synplify�DSP FDATool
	Synplify�DSP FFT
	Synplify�DSP FIFO
	Synplify�DSP FIR
	Synplify�DSP FIR Engine
	Synplify�DSP FIR Rate Converter
	Synplify�DSP Gain
	Synplify�DSP IIR
	Synplify�DSP In
	Synplify�DSP Integrator
	Synplify�DSP Inverter
	Synplify�DSP Log
	Synplify�DSP M Control
	Synplify�DSP Mealy State Machine
	Synplify�DSP MinMax
	Synplify�DSP Moore State Machine
	Synplify�DSP Mult
	Synplify�DSP Mux
	Synplify�DSP Negate
	Synplify�DSP Out
	Synplify�DSP Parallel to Serial
	Synplify�DSP Permutation
	Synplify�DSP Port In
	Synplify�DSP Port Out
	Synplify�DSP Pow
	Synplify�DSP Puncture
	Synplify�DSP RAM
	RAM Background Description

	Synplify�DSP Ramp
	Synplify�DSP Random
	Synplify�DSP Recast
	Synplify�DSP Reed-Solomon Decoder
	Synplify�DSP Reed-Solomon Encoder
	Synplify�DSP Register
	Synplify�DSP RFIR
	Synplify�DSP ROM
	Synplify�DSP Sequence
	Synplify�DSP Serial to Parallel
	Synplify�DSP Shift Register
	Synplify�DSP Shifter
	Synplify�DSP Sign
	Synplify�DSP SinCos
	Synplify�DSP Smart Black Box
	Synplify�DSP Sqrt
	Synplify�DSP Subsystem
	Synplify�DSP SynCoSimTool
	Synplify�DSP SynDSPTool
	SynDSPTool Toolbox Interface

	Implementation Options Dialog Box
	Synplify�DSP SynFixPtTool
	Synplify�DSP Upsample
	Synplify�DSP Vector Concat
	Synplify�DSP Vector Expand
	Synplify�DSP Vector Extract
	Synplify�DSP Vector Split
	Synplify�DSP Viterbi Decoder
	Common Parameters
	Output Format Options
	Overflow Saturation Options
	Underflow Rounding Options
	Special Variables

	Synplify�DSP Functions
	syn_bitrev
	syn_get_coefs
	syn_get_datatype
	syn_get_dspstartup
	syn_get_wordlength
	syn_read_hex
	syn_set_atm
	Timing Engine Configuration Dialog Box

	syn_set_dspstartup
	syn_set_portcapture
	syn_set_portregister
	syn_unlink
	syndspbatch
	syndspdemo
	syndspdoc
	syndsplib
	syndsproot
	syndsptool
	syndspver

	Synplify DSP FPGA Tutorial
	Tutorial Design Flow
	Create Algorithm Models
	Start the Demo Tutorial
	Add Port In and Port Out Blocks
	Add the FIR Block

	Set up for Verification
	Add Stimuli Components
	Add Analysis Components

	Analyze and Simulate
	Explore Quantization Effects
	Running Floating-Point Simulation
	Analyzing the Impact of Quantization

	Synthesize Optimized Architectures
	Run DSP Synthesis
	Verify RTL

	Run Logic Synthesis
	Refine Optimizations
	Optimization Strategies
	Using Retiming for Performance
	Using Folding to Decrease Area

	Blockset Summary
	Summary of Synplify�DSP Block Features

	Index

