ModelSim® SE Tutorial

Software Version 6.5b

© 1991-2009 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
LNt OdUCTION. . .. e 13
ASSUMPLIONS. . . . oottt et e e e e e e 13
Whereto Find Our Documentationttt e e 13
Download aFree PDF Reader WithSearch. 14
Mentor GraphiCs SUPPOIT.ot e e e e 14
Additional SUPPOIo 15
Beforeyou Begin.o e 15
EXample DesigNs 15
Chapter 2
ConCEPtUAl OVEINVIBW . . . o vttt ettt e 17
Design OptimIZations.o v et et e e e e e 17
Basic SImulation FIOW. o 17
PrOJECt FlOW . . .o 19
Multiple Library FIOWo 19
Debugging TOOIS . . .o e 20
Chapter 3
BasiC SIMUIatioN e 23
Createthe Working Design Library. 23
Compilethe Design Units e e 25
OptiMIiZEthE DESIGNottt e 26
Load the DeSIgN. . . .o 27
RUNthe SIMUIEtion o e e 28
Set Breakpoints and Step throughtheSource o i 30
Chapter 4
PO ECES. . .ot e 35
CreateaNew Project. 35
Add Objectstothe Project i 36
Changing Compile Order (VHDL) oot e e e 38
Compilethe DeSIgN.o 39
Optimizefor Design Visibility e 40
Load the DeSIgN . ..ot 40
Organizing Projectswith Folders. 41
Add FOlers. . . .o 41
Moving Filesto Folderso 43
Simulation Configuralions.t 44

ModelSim SE Tutorial, v6.5b 3

Table of Contents

Chapter 5
Working With MultipleLibraries. ... e 47
Creatingthe Resource Library. e 47
Creating the ProjeCt o 49
Linkingtothe Resource Library i 50
V00 . 50
VHD L . . 51
LinkingtoaResource Library 51
Permanently Mapping VHDL ResourcelLibraries oo, 52
Chapter 6
Simulating SystemC DeSIgNSot 55
Setting UP the ENVIrONMENt ottt 56
Preparing an OSCl SystemC deSigN . .. oo v et e et e 56
Compiling aSystemC-only DeSIgNottt 59
Mixed SystemC and HDL Example e 60
Viewing SystemC Objectsinthe GUI e 63
Setting Breakpoints and Stepping inthe SourceWindow 64
Examining SystemC Objectsand Variables. 67
Removing aBreakpoint 68
Chapter 7
AnalyzZing Waveforms e 71
Loading @ DeSigN.o 72
Add ObjectstotheWave WIndowt e 72
Zooming theWaveformDisplayo 73
Using Cursorsinthe Wave Windowt e e 74
WorkingwithaSingle Cursor i e 74
Working with MUltiple CUrsors e 76
Saving and ReusingtheWindow Format 77
Chapter 8
Creating StimulusWith Waveform Editor 79
Load aDesignUnito e 79
Create Graphical StimuluswithaWizard. i 80
Edit WaveformsintheWave Window 82
Save and Reusethe Wave Commands. oo it it 85
Exporting the Created Waveforms. i e e 86
Simulatingwiththe Test BenchFile. 88
Importingan EVCD Fileo e 89
Chapter 9
Debugging With The Dataflow Window. e 91
Exploring CONNECLIVILYo 92
TraCiNg EVENtS. 9
Tracingan X (UNKNOWN)ottt e e ettt et et ee e 98
Displaying Hierarchy inthe DataflowWindow 101

4 ModelSim SE Tutorial, v6.5b

Table of Contents

Chapter 10
Viewing And Initializing Memories e 105
View aMemory and itSCONtENtS. oottt e e e 106
Navigate WithintheMemory e 110
Export Memory DatatoaFile. 112
INitialiZE aMEMOrY . ..o 114
Interactive Debugging Commandsottt 117
Chapter 11
Analyzing Performance With TheProfiler i .. 121
View Profile Details.o 126
Filteringand SavingtheDatat e 127
Chapter 12
Simulating With Code Coverage.oou it e 131
Coverage Statisticsinthe GUI. e e 134
Coverage Statisticsinthe SourceWindow i 137
Toggle Statisticsinthe ObjectsWINdOw. e 138
Excluding Lines and Filesfrom Coverage Statistics., 139
Creating Code Coverage REPOITS.ottt e 140
Chapter 13
Comparing WavefOrmsSo 145
Cregtingthe Reference Datasett e 146
Creatingthe Test Dataset.o et et e e e e 147
Comparingthe SIMulation RUNS i e 148
Viewing Comparison Data.o vt e 149
Comparison DataintheWave Window 149
Comparison DataintheListWindow i 150
Saving and Reloading Comparison Data. oo 151
Chapter 14
Automating SImulation 155
CreatingaSimple DO FIle.o e e 155
Runningin Command-LineMode. i 156
Using Tcl withtheSimulator. e e 158
I ndex

End-User License Agreement

ModelSim SE Tutorial, v6.5b 5

List of Examples

ModelSim SE Tutorial, v6.5b

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab o, 18
Figure 2-2. Project FIOWo o 19
Figure 2-3. Multiple Library FIOW. e 20
Figure 3-1. The CreateaNew Library Dialog. 24
Figure 3-2. work Library Added tothe Library Window 25
Figure 3-3. Compile Source FilesDialogt 26
Figure 3-4. Verilog Modules Compiled intowork Library 26
Figure 3-5. TheDesign Hierarchyo e 27
Figure 3-6. The Object Window and ProcessesWindow 28
Figure 3-7. Using the Popup Menu to Add Signalsto WaveWindow 29
Figure 3-8. Waves Dravn inWave Window.t 29
Figure 3-9. Setting Breakpoint in SourceWindow 30
Figure 3-10. Setting Restart FUNCLIONS e 31
Figure 3-11. Blue Arrow Indicates Where Simulation Stopped.. 31
Figure 3-12. Values Shown in ObjectsWindow, 32
Figure 3-13. Parameter Name and Value in Source ExamineWindow 32
Figure 4-1. Create Project Dialog- ProjectLab 36
Figure 4-2. Adding New ItemstoaProject. 37
Figure4-3. Addfileto Project Dialog.o 37
Figure 4-4. Newly Added Project FilesDisplay a’? for Status. 38
Figure 4-5. Compile Order Dialog.ot e 39
Figure 4-6. Library Window with Expanded Library 40
Figure 4-7. Structure(sim) window for aLoaded Design, 41
Figure 4-8. Adding New FoldertoProject i, 42
Figure4-9. A Folder WithinaProject. s 42
Figure 4-10. Creating Subfolder i e 42
Figure4-11. A folder withaSub-folder 43
Figure 4-12. Changing File Location via the Project Compiler Settings Dialog. 43
Figure 4-13. Simulation ConfigurationDialogt 45
Figure 4-14. A Simulation Configurationinthe Projectwindow 46
Figure 4-15. Transcript Shows Options for Simulation Configurations 46
Figure 5-1. Creating New ResourceLibrary, 48
Figure 5-2. Compiling intothe Resource Library, 49
Figure 5-3. VHDL Simulation Warning Reported in MainWindow 51
Figure 5-4. Specifying a Search Library inthe Smulate Dialog. 52
Figure 6-1. The SystemC File After Modifications., 58
Figure 6-2. Editing the SystemC Header File.. i 59
Figure6-3. Theringbuf h File. e 61
Figure 6-4. Thetest_ringbuf.cppFile i 62
Figure 6-5. Thetest_ringbuf DeSigN 63

ModelSim SE Tutorial, v6.5b

List of Figures

Figure 6-6. SystemC Objectsinthework Library. i, 63
Figure 6-7. SystemC Objects in Structure (sim) and ObjectsWindows. 64
Figure 6-8. Active BreakpointinaSystemCFile i .. 65
Figure 6-9. Simulation Stopped at Breakpoint i, 66
Figure 6-10. SteppingintoaSeparate File. i, 66
Figure 6-11. Output of show Commandttt 67
Figure 6-12. SystemC Primitive Channelsinthe WaveWindow 68
Figure 7-1. Panesof theWaveWindow 71
Figure 7-2. Zooming inwiththeMouse Pointer 74
Figure 7-3. Working with a Single Cursor inthe Wave Window 75
Figure 7-4. Renaming @ CUrSOrot ittt e e e e ettt 76
Figure 7-5. Interval Measurement Between TWO CUISOrS.o oo i 77
Figure 7-6. A Locked Cursor intheWaveWindowo, 77
Figure 8-1. Initiating the Create Pattern Wizard from the Objects Window. 80
Figure 8-2. Create Pattern Wizard. oo e 81
Figure 8-3. Specifying Clock Pattern Attributes., 81
Figure8-4. Theclk Waveform. e 81
Figure8-5. Thereset Waveform e 82
Figure 8-6. Edit Insert Pulse Dialogo 83
Figure 8-7. Signal reset withanInsertedPulse. 83
Figure 8-8. Edit Stretch Edge Dialog.o 84
Figure 8-9. Stretching an Edgeontheclk Signal. o i, 84
Figure 8-10. Deleting an EdgeontheclkSignal 85
Figure 8-11. The Export WaveformDialog. e 86
Figure 8-12. The counter Waveform Reactsto StimulusPatterns. 87
Figure 8-13. The export Test Bench Compiled into thework Library 88
Figure 8-14. Wavesfrom Newly Created TestBench. 89
Figure 8-15. EVCD FileLoaded inWaveWindowccoiiiniinann.. 90
Figure 8-16. Simulation resultswithEVCD File 90
Figure 9-1. A Signal inthe Dataflow Window 93
Figure 9-2. Expanding the View to Display Connected Processes 93
Figure 9-3. The test Net Expanded to Show All Drivers. 9
Figure 9-4. The Embedded Wave Viewer 95
Figure 9-5. Source Codefor the NAND Gate. 95
Figure 9-6. Signals Added to the Wave Viewer Automatically 96
Figure 9-7. Source Code witht_out Highlighted. 96
Figure 9-8. Cursor in Wave Viewer MarksLastEvent. 97
Figure9-9. Tracingthe Event Set e 98
Figure 9-10. A Signal withUnknownValues. 99
Figure 9-11. Dataflow Window with WaveViewer, 100
Figure 9-12. ChaseX |dentifies Cause of Unknownont out 101
Figure 9-13. Dataflow OptionsDialogoo i 102
Figure 9-14. Displaying Hierarchy in the Dataflow Window 103
Figure 10-1. The Memory Listinthe Memorywindow 107
Figure 10-2. Verilog Memory DataWindow, 107

ModelSim SE Tutorial, v6.5b

List of Figures

Figure 10-3. VHDL Memory DataWindowt en s 108
Figure 10-4. Verilog Data After Running Simulation. 108
Figure 10-5. VHDL Data After Running Simulation 109
Figure 10-6. Changingthe AddressRadiX. 109
Figure 10-7. New Address Radix and LineLength (Verilog. 110
Figure 10-8. New Address Radix and LineLength (VHDL) 110
Figure 10-9. GOto DialOg. . . . v v e ettt 111
Figure 10-10. Editing the Address Directly. e 111
Figure 10-11. Searching for a Specific DataVaue. 112
Figure 10-12. Export Memory Dialog.o oo 113
Figure 10-13. Import Memory Dialog.o 115
Figure 10-14. Initialized Memory from Fileand Fill Pattern 116
Figure 10-15. Data Increments Starting at Address251, 117
Figure 10-16. Original Memory Content.ttt i, 117
Figure 10-17. Changing Memory Content for a Range of Addresses**OK 118
Figure 10-18. Random Content Generated for aRange of Addresses. 118
Figure 10-19. Changing Memory Contents by Highlighting. 119
Figure 10-20. Entering Datato Change**OK i e 119
Figure 10-21. Changed Memory Contents for the Specified Addresses. 120
Figure 11-1. Sampling Reported inthe Transcript 123
Figure 11-2. The Profile Window e 124
Figure 11-3. Design Unit Performance Profile o it 125
Figure 11-4. Expand the Hierarchical FunctionCall Tree........................... 126
Figure 11-5. The Source Window Showing aLine fromthe ProfileData 126
Figure 11-6. Profile Details of the Function Tcl_Close.ot 127
Figure 11-7. Profile Detailsof Functionsm 0. i, 127
Figure 11-8. The Profiler Toolbar e 128
Figure 11-9. The Filtered ProfileData.ot e 128
Figure 11-10. The Profile Report Dialog. oo e e 129
Figure 11-11. Thecalltreerpt Report e 130
Figure 12-1. Coverage WindowS.o ottt e e 133
Figure 12-2. Code Coverage Columnsin the Structure (sim) Window. 133
Figure 12-3. View > Coverage Menut e e e 134
Figure 12-4. Right-click a Column Heading to Show ColumnList 135
Figure 12-5. Missed StatementsWindow i 135
Figure 12-6. Coverage DetailsWindow Undocked. 136
Figure 12-7. Instance Coverage Windowttt 137
Figure 12-8. Coverage Statisticsinthe SourceWindow. 137
Figure 12-9. Coverage Numbers Shown by Hovering the Mouse Pointer 138
Figure 12-10. Toggle Coverage inthe ObjectsWindow oo, 139
Figure 12-11. Excluding aFileUsingGUIMenus, 140
Figure 12-12. Cancelling Selected EXCIUSIONSot 140
Figure 12-13. Coverage Text Report Dialogo oo e e 142
Figure 12-14. Coverage HTML Report Dialog.o oo 143
Figure 12-15. Coverage ExclusionsReport Dialog.o oo 143

ModelSim SE Tutorial, v6.5b 9

List of Figures

Figure 13-1. First dialog of the Waveform Comparison Wizard. 148
Figure 13-2. Second dialog of the Waveform ComparisonWizard 148
Figure 13-3. Comparison information in the compare and Objectswindows. 149
Figure 13-4. Comparison objectsinthe Wavewindow., 150
Figure 13-5. The COmpareiConsot e et et 150
Figure 13-6. Compare differencesintheListwindow 151
Figure 13-7. Coveragedatasaved to atextfile......... i, 152
Figure 13-8. Displaying Log FilesintheOpendialog 153
Figure 13-9. Reloading saved comparisondata., 153
Figure 14-1. A Dataset in the Main Window Workspace, 158
Figure 14-2. Buttons Added to the Main Window Toolbar. 160

10 ModelSim SE Tutorial, v6.5b

List of Tables

Table1-1. Documentation List i e e 13
Table 6-1. Supported Operating Systemsfor SystemC 56
Table 11-1. Columnsinthe ProfileWindow 124
Table 12-1. Coverage lconsinthe SourceWindow, 137

ModelSim SE Tutorial, v6.5b 11

List of Tables

12

ModelSim SE Tutorial, v6.5b

Chapter 1
Introduction

Assumptions

We assume that you are familiar with the use of your operating system. Y ou should also be
familiar with the window management functions of your graphic interface: OpenWindows,
OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 2000/XP.

We also assume that you have a working knowledge of the language in which your design
and/or test bench iswritten (i.e., VHDL, Verilog, SystemC, etc.). Although ModelSim™ isan
excellent tool to use while learning HDL concepts and practices, this document is not written to
support that goal.

Where to Find Our Documentation

M odel Sim documentation is available from our website at

www. nodel . conf support

or from the tool by selecting Help from the menu bar.

Table 1-1. Documentation List

Document Format How to get it
Installation & Licensing PDF Help > PDF Bookcase
Guide HTML and PDF | Help > InfoHub
Quick Guide PDF Help > PDF Bookcase
(command and feature and
quick-reference) Help > InfoHub
Tutorial PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
User’s Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub
Reference Manual PDF Help > PDF Bookcase
HTML and PDF | Help > InfoHub

ModelSim SE Tutorial, v6.5b 13

http://www.model.com/support

Introduction
Mentor Graphics Support

Table 1-1. Documentation List

Document Format How to get it

Foreign Language PDF Help > PDF Bookcase

Interface Manual HTML Help > InfoHub

Std _DevelopersKit User's | PDF www.model.com/support/documentation/BOO

Manual K/sdk_um.pdf
The Standard Developer’s Kit isfor use with
Mentor Graphics QuickHDL.

Command Help ASCII type help [command name] at the prompt in
the Transcript pane

Error message help ASCII type verror <msgNum> at the Transcript or
shell prompt

Tcl Man Pages (Tcl HTML select Help > Tcl Man Pages, or find

manual) contents.htm in \modeltech\docs\tcl_help_html

Technotes HTML available from the support site

Download a Free PDF Reader With Search

Model Sim PDF documentation requires an Adobe Acrobat Reader for viewing. The Reader is
available without cost from Adobe at

www. adobe. com

Mentor Graphics Support

Mentor Graphics software support includes software enhancements, technical support, accessto
comprehensive online services with SupportNet, and the optional On-Site Mentoring service.
For details, see:

http://supportnet. mentor.com about/

If you have questions about this software release, please log in to SupportNet. Y ou may search
thousands of technical solutions, view documentation, or open a Service Request online at:

http://supportnet. mentor.com

If your siteis under current support and you do not have a SupportNet login, you may easily
register for SupportNet by filling out the short form at:

http://supportnet.mentor.conmuser/register.cfm

All customer support contact information can be found on our web site at:

http://supportnet.mentor.com contacts/supportcenters/

14 ModelSim SE Tutorial, v6.5b

http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.adobe.com
http://supportnet.mentor.com/about/
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/register.cfm
http://supportnet.mentor.com/contacts/supportcenters/

Introduction
Before you Begin

Additional Support
Online and email technical support options, maintenance renewal, and links to international
support contacts:
http://ww. nodel . com support

Access to the most current version of Model Sim:

htt p: //ww. nodel . conf downl oads/

Place your name on our list for email notification of news and updates:

http://ww. nodel . conl resources/resources_newsl etter. asp

Before you Begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best
way to create directories, copy files, and execute programs within your operating system.
(When you are operating the simulator within ModelSim’s GUI, the interface is consistent for

all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system
when trying the examples.

Example Designs

Model Sim comes with Verilog and VHDL versions of the designs used in these lessons. This
allowsyou to do the tutorial regardless of which license type you have. Though we havetried to
minimize the differences between the Verilog and VHDL versions, we could not do soin all
cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-
specific instructions. Follow the instructions that are appropriate for the language you use.

ModelSim SE Tutorial, v6.5b 15

http://www.model.com/support/
http://www.model.com/downloads/
http://www.model.com/resources/resources_newsletter.asp

Introduction
Before you Begin

16 ModelSim SE Tutorial, v6.5b

Chapter 2
Conceptual Overview

Introduction
ModelSim is a verification and simulation tool for VHDL, Verilog, SystemVerilog, SystemC,
and mixed-language designs.

Thislesson provides abrief conceptual overview of the Model Sim simulation environment. Itis
divided into five topics, which you will learn more about in subsequent |essons.

» Design Optimizations — Refer to the Optimizing Designs with vopt chapter in the
User’'s Manual.

» Basic simulation flow — Refer to Chapter 3 Basic Smulation.

* Project flow — Refer to Chapter 4 Projects.

* Multiplelibrary flow — Refer to Chapter 5 Working With Multiple Libraries.

» Debugging tools — Refer to remaining lessons.

Design Optimizations

Before discussing the basic ssmulation flow, it is important to understand design optimization.
By default, Model Sim optimizations are automatically performed on all designs. These
optimizations are designed to maximize simulator performance, yielding improvements up to
10X, in some Verilog designs, over non-optimized runs.

Global optimizations, however, may have an impact on the visibility of the design simulation
results you can view — certain signals and processes may not be visible. If these signals and
processes are important for debugging the design, it may be necessary to customize the
simulation by removing optimizations from specific modules.

It isimportant, therefore, to make an informed decision asto how best to apply optimizationsto
your design. The tool that performs global optimizationsin ModelSim is called vopt. Please
refer to the Optimizing Designs with vopt chapter in the Model Sim User’s Manual for a
complete discussion of optimization trade-offs and customizations. For details on command
syntax and usage, please refer to vopt in the Reference Manual.

Basic Simulation Flow
The following diagram shows the basic steps for smulating a design in Model Sim.

ModelSim SE Tutorial, v6.5b 17

Conceptual Overview
Basic Simulation Flow

Figure 2-1. Basic Simulation Flow - Overview Lab

Create a working library

'

Compile design files

'

Load and Run simulation

'

Debug results

Creating the Working Library

In ModelSim, all designs are compiled into alibrary. You typically start a new
simulation in Model Sim by creating aworking library called "work," which isthe
default library name used by the compiler as the default destination for compiled design
units.

Compiling Your Design

After creating the working library, you compile your design unitsinto it. The ModelSim
library format is compatible across all supported platforms. Y ou can simulate your
design on any platform without having to recompile your design.

Loading the Simulator with Y our Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the
simulator on atop-level module (Verilog) or aconfiguration or entity/architecture pair
(VHDL).

Assuming the design loads successfully, the simulation timeis set to zero, and you enter
arun command to begin simulation.

Debugging Y our Results

If you don't get the results you expect, you can use Model Sim'’ s robust debugging
environment to track down the cause of the problem.

18

ModelSim SE Tutorial, v6.5b

Conceptual Overview
Project Flow

Project Flow

A project is acollection mechanism for an HDL design under specification or test. Even though
you don’t have to use projects in Model Sim, they may ease interaction with the tool and are
useful for organizing files and specifying simulation settings.

The following diagram shows the basic steps for ssmulating a design within aModelSim
project.

Figure 2-2. Project Flow

Create a project

'

Add files to the project

'

Compile design files

'

Run simulation

v

Debug results

Asyou can see, the flow is similar to the basic simulation flow. However, there are two
important differences:

* You do not haveto create aworking library in the project flow; it is done for you
automatically.

» Projectsare persistent. In other words, they will open every time you invoke ModelSim
unless you specifically close them.

Multiple Library Flow

Model Sim uses libraries in two ways: 1) as alocal working library that contains the compiled
version of your design; 2) asaresource library. The contents of your working library will
change as you update your design and recompile. A resource library istypicaly static and
serves as a parts source for your design. Y ou can create your own resource libraries, or they
may be supplied by another design team or athird party (e.g., asilicon vendor).

ModelSim SE Tutorial, v6.5b 19

Conceptual Overview
Debugging Tools

Y ou specify which resource libraries will be used when the design is compiled, and there are
rules to specify in which order they are searched. A common example of using both aworking
library and aresource library is one where your gate-level design and test bench are compiled
into the working library, and the design references gate-level models in a separate resource
library.

The diagram below shows the basic steps for simulating with multiple libraries.

Figure 2-3. Multiple Library Flow

Create a working library

'

Compile design files

'

Link to resource libraries

'

Run simulation

v

Debug results

Y ou can aso link to resource libraries from within a project. If you are using a project, you
would replace the first step above with these two steps: create the project and add the test bench
to the project.

Debugging Tools

Model Sim offers numerous tools for debugging and analyzing your design. Several of these
tools are covered in subsequent lessons, including:

» Using projects

* Working with multiple libraries

» Simulating with SystemC

» Setting breakpoints and stepping through the source code

» Viewing waveforms and measuring time

20 ModelSim SE Tutorial, v6.5b

Conceptual Overview
Debugging Tools

» Exploring the "physical" connectivity of your design
* Viewing and initializing memories

* Creating stimulus with the Waveform Editor

* Analyzing simulation performance

» Testing code coverage

e Comparing waveforms

* Automating simulation

ModelSim SE Tutorial, v6.5b

21

Conceptual Overview
Debugging Tools

22 ModelSim SE Tutorial, v6.5b

Chapter 3
Basic Simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:

Create the Working Design Library
Compile the Design Units
Optimize the Design

Load the Design

o W D E

Run the Simulation

Design Files for this Lesson

The sample design for this lesson is asimple 8-bit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog — <install_dir>/examples/tutorial s/'verilog/basicS mulation/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/vhdl/basicS mulation/counter.vhd and tcounter.vhd
This lesson uses the Verilog files counter.v and tcounter.v. If you have aVHDL license, use

counter.vhd and tcounter.vhd instead. Or, if you have amixed license, feel freeto use the
Verilog test bench with the VHDL counter or vice versa.

Related Reading

User’'s Manual Chapters: Design Libraries, Verilog and SystemVerilog Simulation, and VHDL
Simulation.

Reference Manual commands: vlib, vmap, vlog, vcom, vopt, view, and run.

Create the Working Design Library

Before you can simulate a design, you must first create alibrary and compile the source code
into that library.

1. Create anew directory and copy the design files for thislesson into it.

ModelSim SE Tutorial, v6.5b 23

Basic Simulation
Create the Working Design Library

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/basicS mulation to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
[<ingtall_dir>/examples/tutorial ’'vhdl/basicSmulation to the new directory.

. Start ModelSim if necessary.

a. Typevsim at aUNIX shell prompt or use the ModelSim icon in Windows.

Upon opening Model Sim for the first time, you will see the Welcome to ModelSim
diaog. Click Close.

b. Select File> Change Directory and change to the directory you created in step 1.

. Create the working library.

a. Select File> New > Library.

This opens a dialog where you specify physical and logical names for the library
(Figure 3-1). You can create anew library or map to an existing library. We'll be
doing the former.

Figure 3-1. The Create a New Library Dialog

Create a New Library

— LCreate

¥ ia new library and a logical mapping o ik

" amap to an existing librany

— Librar Marme:
Iwu:-rk

— Library Phozical Marme:

|wu:urk

Cancel |

b. Typework inthe Library Namefield (if it isn’'t already entered automatically).
c. Click OK.

Model Sim creates a directory called work and writes a specially-formatted file
named _info into that directory. The _info file must remain in the directory to
distinguish it asaModelSim library. Do not edit the folder contents from your
operating system; all changes should be made from within Model Sim.

24

ModelSim SE Tutorial, v6.5b

Basic Simulation
Compile the Design Units

Model Sim also adds the library to the Library window (Figure 3-2) and records the
library mapping for future reference in the Model Sim initialization file
(modelsim.ini).

Figure 3-2. work Library Added to the Library Window

e

Mame Type Path ’
+Hl work Library work “.
i} floatfidip Library $MODEL_TECH/.dd
+{l mtiavm Library SMODEL_TECH/. .=
+{lp mtiovm Library SMODEL_TECH/. .
+-) mtiupF Library EMODEL_TECH/. . /i
-l sv_std Library $MODEL_TECH/../s
+l vitslzo00 Library $MODEL _TECH/ .Y,
+-4l iees Library SMODEL_TECH/..[i#
4} modelsim_iib Library SMODEL_TEcy

I ;@ ibj’_.q_ Library $MODE
- RA— -

When you pressed OK in step 3c above, the following was printed to the Transcript window:

vlib work
vmap wor k wor k

These two lines are the command-line equivalents of the menu selections you made. Many
command-line equivalents will echo their menu-driven functions in this fashion.

Compile the Design Units

With the working library created, you are ready to compile your source files.

Y ou can compile by using the menus and dialogs of the graphic interface, asin the Verilog
example below, or by entering acommand at the Model Sim> prompt.

1. Compile counter.v and tcounter.v.

a. Select Compile > Compile. This opens the Compile Source Files dialog
(Figure 3-3).

If the Compile menu option is not available, you probably have a project open. If so,
close the project by making the Library window active and selecting File > Close
from the menus.

b. Select both counter.v and tcounter.v modules from the Compile Source Files dialog
and click Compile. The files are compiled into the work library.

c. When compileisfinished, click Done.

ModelSim SE Tutorial, v6.5b 25

Basic Simulation
Optimize the Design

Figure 3-3. Compile Source Files Dialog

Library: Iwu:urk j

Loak ir: I) bazicSimulation j = ﬁ ,

counter, v

=
Ccounter.y

File: marme: |"tu:u:uunter.v" “counter v Compile I
Filez af type: I HOL Files [* ;" wl" vhd;” whdl”. vhu;”.hdl;”.vj Daone |

[T Compile selected files tagether Diefaulk Options... | Edit Source |

2. View the compiled design units.

a. IntheLibrary window, click the’+" icon next to the work library and you will see
two design units (Figure 3-4). Y ou can aso see their types (Modules, Entities, etc.)
and the path to the underlying sourcefiles.

Figure 3-4. Verilog Modules Compiled into work Library

Mame !
= work Library wark
counter odule :foues ria rials fverilog/basicSimulation fcounter, v
te Maodul I: fquestaftutorial frutorials fverilogbasicSimulation foounte
{[1] test_counter Module I: jquesta ftutorial ftutorials fverilog basicSimulation ftoounter . v
<} foatfixib Library SMODEL_TECH/. . ffloatfixdib . :
w4l mtiavm Library $MODEL_TECH/../avm {
<} mtiovm Library SMODEL_TECH/..fovm-2.0
+- iy mtuPF Library SMODEL_TECH/. . fupf_lib ‘
+Hl} sv_std Library SMODEL_TECH/..jev_std .
ﬂ_\:i&l}ﬂﬂﬂ r..uhw (ODEL_TECH/,. juitgl . r"
. o . ."H'"#" ol -.\ﬁJ.__ /\

Optimize the Design

1. Usethe vopt +acc command to optimize the design with full visibility into all design
units.

a. Enter the following command at the Model Sim> prompt in the Transcript window:
vopt +acc test_counter -0 testcounter_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

26 ModelSim SE Tutorial, v6.5b

Basic Simulation
Load the Design

The -0 switch alows you designate the name of the optimized design
(testcounter_opt). Y ou must provide an optimized design name with vopt.

Load the Design

1. Loadthetest_counter module into the smulator.
a. Usethe optimized design name to load the design with the vsim command:

vsim testcounter_opt

When the design is loaded, a Structure window opens (labeled sim). This window
displays the hierarchical structure of the design as shown in Figure 3-5. You can
navigate within the design hierarchy in the Structure (ssim) window by clicking on
any linewitha’+ (expand) or -’ (contract) icon.

Figure 3-5. The Design Hierarchy

Design unit

test_counter(fast) Module +acc=<full =
= counter(fast) Module +acc=<full =4
%‘ increment counter(fast) Function +acc=<full =)
o FALWAYS#3S counter (fast) Process [
o FINITIAL#17 test_counter(fast) Process
oF FINITIAL#23 test_counter(fast) Process
o FINITIAL#30 test_counter(fast) Process
B e S I q(

In addition, an Objects window and a Processes window opens (Figure 3-6). The
Objects window shows the names and current values of data objectsin the current
region selected in the Structure (sim) window. Data objects include signals, nets,
registers, constants and variables not declared in aprocess, generics, parameters, and
member data variables of a SystemC module.

The Processes window displaysalist of HDL and SystemC processes in one of four
viewing modes: Active, In Region, Design, and Hierarchical. The Design view mode
isintended for primary navigation of ESL (Electronic System Level) designs where
processes are a foremost consideration. By default, this window displays the active
processes in your simulation (Active view mode).

ModelSim SE Tutorial, v6.5b 27

Basic Simulation
Run the Simulation

Figure 3-6. The Object Window and Processes Window

it type _|Visibiity

_ +acc=<full > # reset
£ +acc=<full > 4 count

Run the Simulation

WEe're ready to run the simulation. But before we do, we'll open the Wave window and add
signalstoit.

1. Open the Wave window.
a. Enter view wave at the command line.

The Wave window opens in the right side of the Main window. Resize it soitis
visible.

Y ou can aso use the View > Wave menu selection to open a Wave window. The
Wave window isjust one of several debugging windows available on the View
menul.

2. Add signalsto the Wave window.

a. Inthe Structure (sim) window, right-click test_counter to open a popup context
menu.

b. Select Add > ToWave> All itemsin region (Figure 3-7).
All signalsin the design are added to the Wave window.

28 ModelSim SE Tutorial, v6.5b

Basic Simulation
Run the Simulation

Figure 3-7. Using the Popup Menu to Add Signals to Wave Window
B)

Instance Design unit

| B test_counter E)
L %dut View Declaration Madule

‘ increment View Instantation Functio HHHHKKKK

L All items in region and Blow

o FINITIAL#17 To List

= = C
o FINITIAL#23 F.ﬂpdy To Log] Allitems in design
o FINITIAL#30 ind... To Dataflow ¥

Expand Selected

WO NI A - S

3. Run the simulation.

a. Click the Runicon.

The simulation runsfor 100 ns (the default simulation length) and waves are
drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Transcript window.
The simulation advances another 500 ns for atotal of 600 ns (Figure 3-8).

Figure 3-8. Waves Drawn in Wave Window

Messages

#. ftest_counter/dk]
ftest_counterfreset |0

£ Jtest counterjeaunt S| Q00RO ¥ ¥ YT O

c. Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break command or it
hits a statement in your code (e.g., a Verilog $stop statement) that halts the
simulation.

ModelSim SE Tutorial, v6.5b 29

Basic Simulation
Set Breakpoints and Step through the Source

d.

Click the Break icon | |54 | to stop the simulation.

Set Breakpoints and Step through the Source

Next you

will take a brief look at one interactive debugging feature of the ModelSim

environment. Y ou will set abreakpoint in the Source window, run the simulation, and then step
through the design under test. Breakpoints can be set only on executable lines, which are

indicated

with red line numbers.

1. Open counter.v in the Source window.

a
b.

C.

Select View > Files to open the Files window.
Click the + sign next to the sim filename to see the contents of vaim.wif dataset.

Double-click counter.v (or counter.vhd if you are ssmulating the VHDL files) to
open the file in the Source window.

2. Set abreakpoint on line 36 of counter.v (or, line 39 of counter.vhd for VHDL).

a. Scrall to line 36 and click in the BP (breakpoint) column next to the line number.
A red ball appearsin the line number column at line number 36 (Figure 3-9),
indicating that a breakpoint has been set.

Figure 3-9. Setting Breakpoint in Source Window
m I TukorialfexamplestutorialsverilogibasicSimulation/counter . v S B Ei
Ln#
33 endfunction
34
35 always @ (posedge clk or posedge reset)
3 A if [reset)
3T count = #tpd_reset_tu:u_cu:uunt &' hoo;
3g elae
39 count <= #tpd_cl}c_tu_cuunt increment (count) ;
40 .
4| v
B Wave Iﬂ couniker v | 3]

3. D
a
b.

C.

isable, enable, and del ete the breakpoint.
Click the red ball to disable the breakpoint. It will become a black ball.
Click the black ball again to re-enable the breakpoint. It will become ared ball.
Click the red ball with your right mouse button and select Remove Breakpoint 36.

Click in the line number column next to line number 36 again to re-create the
breakpoint.

30

ModelSim SE Tutorial, v6.5b

Basic Simulation
Set Breakpoints and Step through the Source

4. Restart the simulation.

a. Click the Restart icon to reload the design elements and reset the ssmulation

time to zero.

The Restart dialog that appears gives you options on what to retain during
the restart (Figure 3-10).

Figure 3-10. Setting Restart Functions
Restart_STaTEY

keep:

IV List Format

Wave Format

¥ EBreakpoints
Logged Signals

i1

<

i1

Yirtual Definitions
Aszerkions

Cover Directives
ATY Faormat

< <A A

i Restart Cancel |

b. Click the Restart button in the Restart dialog.

c. Click the Run-All icon.

The simulation runs until the breakpoint is hit. When the simulation hits the

breakpoint, it stops running, highlights the line with ablue arrow in the
Source view (Figure 3-11), and issues a Break message in the Transcript window.

Figure 3-11. Blue Arrow Indicates Where Simulation Stopped.

m Z: fTukorialfexamplesitutarialsfverilogfbasicSimulationcounter .«

Lnat -

32 encl

33 endfunction

34

35 always [(posedge clk or posedge reset)

3 G if [reset)

a7 count = #tpd_reset_tu_cnunt S'hoo;

35 el=e

39 count <= #tpd_clk_tu_cuunt increment (count) ;

40 -

ﬂ Y

2| Wave IL‘] counter .y — 4|3

ModelSim SE Tutorial, v6.5b 31

Basic Simulation
Set Breakpoints and Step through the Source

When a breakpoint is reached, typically you want to know one or more signal
values. Y ou have severa options for checking values:

* look at the values shown in the Objects window (Figure 3-12)

Figure 3-12. Values Shown in Objects Window

Ohjects

Tlhame Jvabe ki

4 tpd_reset_to_count 3 Parameter Internal

tpd_dk_to_count 2 Parameter Internal
4 count HHHXNHHX Packed Array Qut

dk St Met In

reset 5t1 Met In

» set your mouse pointer over avariable in the Source window and ayellow box
will appear with the variable name and the value of that variable at the time of
the selected cursor in the Wave window

* highlight asignal, parameter, or variable in the Source window, right-click it,
and select Examine from the pop-up menu to display the variable and its current
value in a Source Examine window (Figure 3-13)

Figure 3-13. Parameter Name and Value in Source Examine Window

x

fteat_counter,/dut/#ALWAYS5#35/tpd reset to count
3

o]

* usethe examine command at the VSIM> prompt to output a variable value to
the Transcript window (i.e., exani ne count)

5. Try out the step commands.

a. Click the Step icon on the Main window toolbar. =
e

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and
Continue Run commands until you feel comfortable with their operation.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

32 ModelSim SE Tutorial, v6.5b

Basic Simulation
Set Breakpoints and Step through the Source

1. Select Simulate > End Simulation.
2. Click Yeswhen prompted to confirm that you wish to quit simulating.

ModelSim SE Tutorial, v6.5b 33

Basic Simulation
Set Breakpoints and Step through the Source

34 ModelSim SE Tutorial, v6.5b

Chapter 4
Projects

Introduction

In this lesson you will practice creating a project.

At aminimum, projects contain awork library and a session state that is stored in a.mpf file. A
project may also consist of:

» HDL sourcefilesor references to source files
» other files such as READMES or other project documentation
* local libraries

» referencesto global libraries

Design Files for this Lesson

The sample design for this lesson is asimple 8-bit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/projects/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/'vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v. If you have aVHDL license, use
tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Projects.

Create a New Project

1. Create anew directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorial s/verilog/projects to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorial s/'vhdl/projects to the new directory.

ModelSim SE Tutorial, v6.5b 35

Projects
Create a New Project

2. If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at a UNIX shell prompt or use the Model Sim icon in Windows.

b. Select File> Change Directory and change to the directory you created in step 1.
3. Create anew project.

a. Select File> New > Project (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project
Location (i.e., directory), and Default Library Name (Figure 4-1). Y ou can also
reference library settings from a selected .ini file or copy them directly into the
project. The default library is where compiled design units will reside.

b. Typetest inthe Project Namefield.

c. Click the Browse button for the Project Location field to select a directory where the
project file will be stored.

d. Leavethe Default Library Name set to work.
e. Click OK.

Figure 4-1. Create Project Dialog - Project Lab

Create Projeck El

— Project Mame
|test

— Project Location
|E: /Tutonial/examples/projects Browse. ..

— Default Libram Mame
|wu:|rk

— Copy Settings From

|a’mndelsim.ini Browse...

% Copy Library Mappings © Reference Libran Mappings

Ok | I:ance||

Add Objects to the Project

Once you click OK to accept the new project settings, a blank Project window and the “Add
items to the Project” dialog will appear (Figure 4-2). From the dialog you can create a new
design file, add an existing file, add afolder for organization purposes, or create a ssmulation
configuration (discussed below).

36 ModelSim SE Tutorial, v6.5b

Projects
Create a New Project

Figure 4-2. Adding New Items to a Project
£

— Click an the icon to add itemsz of that lpe:——

]]

Create Mew File Add Ezizting File
Create Simulation Create Mew Folder

Cloze |

1. Addtwo existing files.
a. Click Add Existing File.

This opensthe Add fileto Project dialog (Figure 4-3). Thisdialog lets you browse to
find files, specify thefile type, specify afolder to which the file will be added, and
identify whether to leave the filein its current location or to copy it to the project

directory.
Figure 4-3. Add file to Project Dialog
Add file to Project x|
— File Mame
I-:u:uunter.v tcounter.y Browse... |
— Addfie aztope——— Falder
| default R ’;riilng files b
¥ Feference from curent location © Copy to project directary
Ok, I Cancel I

b. Click the Browse button for the File Name field. This opens the “ Select filesto add
to project” dialog and displays the contents of the current directory.

c. Verilog: Select counter.v and tcounter.v and click Open.
VHDL: Select counter.vhd and tcounter.vhd and click Open.

This closes the “ Select files to add to project” dialog and displays the selected files
inthe “Add fileto Project” dialog (Figure 4-3).

d. Click OK to add the files to the project.

ModelSim SE Tutorial, v6.5b 37

Projects

Create a New Project

e. Click Close to dismissthe Add itemsto the Project dialog.

Y ou should now see two files listed in the Project window (Figure 4-4). Question-
mark iconsin the Status column indicate that the file has not been compiled or that
the source file has changed since the last successful compile. The other columns
identify file type (e.g., Verilog or VHDL), compilation order, and modified date.

Figure 4-4. Newly Added Project Files Display a’?’ for Status

Mame Status Type Order |Modified
trounter. v > Verilog 1 10//15/08 09:53:50 PM
counter.y > Verlog 0 10//15/08 0%:53:50 PM

JIL Library

Changing Compile Order (VHDL)

By default Model Sim performs default binding of VHDL designs when you load the design
with vsim. However, you can elect to perform default binding at compile time. (For details,
refer to the section Default Binding in the User’s Manual.) If you elect to do default binding at
compile, then the compile order isimportant. Follow these steps to change compilation order
within a project.

1. Change the compile order.

a. Select Compile > Compile Order.

This opens the Compile Order dialog box.

. Click the Auto Gener ate button.

Model Sim "determines’ the compile order by making multiple passes over thefiles.
It starts compiling from the top; if afile failsto compile due to dependencies, it
moves that file to the bottom and then recompiles it after compiling the rest of the
files. It continuesin this manner until all files compile successfully or until afile(s)
can't be compiled for reasons other than dependency.

Alternatively, you can select afile and use the Move Up and Move Down buttons to
put the filesin the correct order (Figure 4-5).

38

ModelSim SE Tutorial, v6.5b

Projects
Create a New Project

Figure 4-5. Compile Order Dialog

Compile Drder x|

——iCurrent Order

tcounter,y il

=
counker v

Move up/down buttons ——

[T [

Auko Generate| Ok | Can-:e||

c. Click OK to close the Compile Order dialog.

Compile the Design
1. Compilethefiles.

a. Right-click either counter.v or tcounter.v in the Project window and select Compile
> Compile All from the pop-up menu.

Model Sim compiles both files and changes the symbol in the Status column to a
green check mark. A check mark means the compile succeeded. If compile fails, the
symbol will beared’X’, and you will see an error message in the Transcript
window.

2. View the design units.
a. Click theLibrary tab (Figure 4-6).
b. Click the’+ icon next to the work library.

Y ou should see two compiled design units, their types (modulesin this case), and the
path to the underlying source files.

ModelSim SE Tutorial, v6.5b 39

Projects

Create a New Project

Figure 4-6. Library Window with Expanded Library

Type Path

Library C:ftutorials fverilog/projects fwork

{/]] counter Module C: ftutorials frerilog fprojects foounter v '
st_counter odule - rials fverilogfprojects ftcounter. v .

test_counte Modul C: ftutorials/verilog/projectstcounte -
ﬂm floatfixlib Library SMODEL_TECH/../floatfixib
+ mtiAwvm Library SMODEL_TECH/. . favm ,
¥ mtCvm Library SMODEL_TECH/.. fovm-2.0 ’
+ mtLIPF Library SMODEL_TECH/. . fupf_lib
l’ﬂ sv_std Library EMODEL_TECH/.. fsv_std
++) vitsl2000 Library $MODEL_TECH/.. vital2000
1,4]1 iees Library SMODEL_TECH/..fiese r

EMODEL_TECH/. . fmodelsim_lib

M-

ﬂm modelsim_lib Library

Optimize for Design Visibility

1

Use the vopt +acc command to optimize the design with full visibility into all design
units.

a. Enter the following command at the QuestaSim> prompt in the Transcript window:
vopt +acc test_counter -o testcounter_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch allows you designate the name of the optimized design
(testcounter_opt). Y ou must provide an optimized design name with vopt.

Load the Design

1

Load the test_counter design unit.
a. Usethe optimized design name to load the design with the vsim command:
vsim testcounter_opt

The Structure (sim) window appears as part of the tab group with the Library and
Project windows (Figure 4-7).

40

ModelSim SE Tutorial, v6.5b

Projects
Organizing Projects with Folders

Figure 4-7. Structure(sim) window for a Loaded Design

+acc=<full =

test_counter(fast) Madule
+acc=<full =

+ g dut counter(fast) Module
ﬁ.} FINITIAL#17 test_counter(fast) Process

o FINITIAL#23 test_counter(fast) Process ’

o FINITIAL#31 test_counter(fast) Process

At this point you would typically run the simulation and analyze or debug your
design like you did in the previous lesson. For now, you' Il continue working with
the project. However, first you need to end the simulation that started when you

loaded test_counter.
2. Endthe simulation.
a Select Smulate > End Simulation.

b. Click Yes.

Organizing Projects with Folders

If you have alot of filesto add to a project, you may want to organize them in folders. Y ou can
create folders either before or after adding your files. If you create afolder before adding files,
you can specify in which folder you want afile placed at the time you add the file (see Folder
field in Figure 4-3). If you create afolder after adding files, you edit the file properties to move

it to that folder.

Add Folders
Asshown previously in Figure 4-2, the Add itemsto the Project dialog has an option for adding
folders. If you have already closed that dialog, you can use a menu command to add afolder.

1. Addanew folder.
a. Right-click in the Projects window and select Add to Project > Folder.

b. TypeDesign Filesin the Folder Namefield (Figure 4-8).

41

ModelSim SE Tutorial, v6.5b

Projects
Organizing Projects with Folders

Figure 4-8. Adding New Folder to Project

Add Folder x|

— Folder Mame

IDesign Filez

—Falder Lacatian

|T|:||:u Level II

ak. I Eanu:ell

c. Click OK.
The new Design Files folder is displayed in the Project window (Figure 4-9).

Figure 4-9. A Folder Within a Project

Project - C: ftutorials fverilogfprojectsftest

Mame Modified

counter.y \f Verilog 0 10/15/03 09:58: 50 PM
toounter. v + Verilog 1 10/15/08 09:58:50 PM
[C] Diesign Files Folder

¢
3
\

2. Add asub-folder.
a. Right-click anywherein the Project window and select Add to Project > Folder.
b. TypeHDL inthe Folder Namefield (Figure 4-10).

Figure 4-10. Creating Subfolder

Add Folder x|

— Folder Mame

[HOL

— Folder Locatian

Dezign Files

|Top Lewvel

=

c. Click the Folder Location drop-down arrow and select Design Files.
d. Click OK.

42 ModelSim SE Tutorial, v6.5b

Projects
Organizing Projects with Folders

A '+ icon appears next to the Design Files folder in the Project window
(Figure 4-11).

Figure 4-11. A folder with a Sub-folder

Project - C: ftutorialsfverilogfprojects ftest

Mame Modified

counter. v " Verilog 0 101508 09:58:50 PM
toounter, v " verilog 1 10/15/08 09:58:50 PM

=B Design Files Folder

] HOL Folder

e. Click the’+' icon to seethe HDL sub-folder.

Moving Files to Folders

If you don’t place filesinto afolder when you first add the files to the project, you can move
them into afolder using the properties dialog.

1. Movetcounter.v and counter.v to the HDL folder.
a. Select both counter.v and tcounter.v in the Project window.
b. Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to
set avariety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

Project Compiler Settings El

General I Verilog & System Verilog] Coverage] ﬂﬂ
—General Settings
[T Do Mot Compile Compile to library: |w|: rk ﬂ
Place in Folder: |[-DL ﬂ
—File Properties
Multiple files selected
OK | Cancel |

c. Click the Place In Folder drop-down arrow and select HDL.

ModelSim SE Tutorial, v6.5b 43

Projects
Simulation Configurations

d. Click OK.

The selected files are moved into the HDL folder. Click the’+’ icon next to the HDL
folder to see thefiles.

Thefiles are now marked with a’? in the Status column because you moved the
files. The project no longer knows if the previous compilation is till valid.

Simulation Configurations

A Simulation Configuration associates a design unit(s) and its ssmulation options. For example,
let’s say that every time you load tcounter.v you want to set the ssmulator resolution to
picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify
those options each time you load the design. With a Simulation Configuration, you specify
options for a design and then save a* configuration” that associates the design and its options.
The configuration is then listed in the Project window and you can double-click it to load
tcounter.v along with its options.

1. Create anew Simulation Configuration.

a. Right-click in the Project window and select Add to Project > Simulation
Configuration from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabsin this
dialog present several ssmulation options. Y ou may want to explore the tabs to see
what isavailable. Y ou can consult the Model Sim User’s Manual to get a description
of each option.

44 ModelSim SE Tutorial, v6.5b

Projects
Simulation Configurations

Figure 4-13. Simulation Configuration Dialog

Add Simulation Configuration x|

— Simulation Configuration Mame Flace in Folder
|n:|:|unter ’]DL ﬂ Add Folder...
Design | YHDL | Verlog | Libraries | SDF | Others | £
*|Mame IType = |Path =
-Hl work Library work
M _omt Optimized...
1] counter b odule C:/Tutonial/examplestutonialz Aeenlogdprojects
Module C:/Tutorialexamplestutonials Avenilogs projects
1,4]1 wv_std Library $MODEL_TECH/. fsv_std
1,{[[wital2000 Library FMODEL_TECH/. Avital2000 —
=l ieee Library $MODEL_TECH/. fieee
1’m modelzim_lib Librany $MODEL_TECH/.. /modelzim_lib
il atd Lihrars #MONFL TECH/ Astd |
4| | i
Deszign Unit(z] Resolution
’Eu:urk.test_cnunter ’; -l
Optirization
’T- Enable optimization Optimization Dptiu:uns...|
Save | Cancel |

=)

Type counter in the Simulation Configuration Name field.

Select HDL from the Place in Folder drop-down.

e o

Click the '+ icon next to the work library and select test_counter.

e. Click the Resolution drop-down and select ps.

f. Uncheck the Enable optimization selection box.

For Verilog, click the Verilog tab and check Enable hazard checking (-hazar ds).
Click Save.

The Project window now shows a Simulation Configuration named counter in the
HDL folder (Figure 4-14).

ModelSim SE Tutorial, v6.5b 45

Projects
Simulation Configurations

Figure 4-14. A Simulation Configuration in the Project window

Project - C: ftutorialsfverilog/projectsftest

Type Modified

Design Files Folder
Folder
toounter.v { Verilog | 10/15/08 09:58:50 PM
® counter.v v Verilog 0 10/15/08 09:558:50 PM
counter Simulation

w"\"’ e \'_ :

2. Load the Simulation Configuration.
a. Double-click the counter Simulation Configuration in the Project window.

In the Transcript window of the Main window, the vsim (the Model Sim simulator)
invocation shows the -hazards and -t ps switches (Figure 4-15). These are the
command-line equivalents of the options you specified in the Simulate dialog.

Figure 4-15. Transcript Shows Options for Simulation Configurations
—_—_—_—

e
wsim -hazards -t ps -novopt work, test_counter
wsim -hazards -t ps -novopt work. test_counter ‘

Loading Work, test_counter '

Loading work. counter

VSIM 5= ;
|Pruject: test |Nuw: Ops Delta: 0 |sim:ftest_mur1ter ?

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close

the current project.

1. Select Smulate> End Simulation. Click Yes.

2. Inthe Project window, right-click and select Close Project.

If you do not close the project, it will open automatically the next time you start
ModelSim.

46

ModelSim SE Tutorial, v6.5b

Chapter 5
Working With Multiple Libraries

Introduction

In this lesson you will practice working with multiple libraries. Y ou might have multiple
libraries to organize your design, to access | P from athird-party source, or to share common
parts between simulations.

Y ou will start the lesson by creating aresource library that contains the counter design unit.
Next, you will create a project and compile the test bench into it. Finally, you will link to the
library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for this lesson is asimple 8-hit, binary up-counter with an associated test
bench. The pathnames are as follows:

Verilog —<install_dir>/examples/tutorial s/verilog/libraries/counter.v and tcounter.v
VHDL —<install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

Thislesson usesthe Verilog files tcounter.v and counter.v in the examples. If you haveaVHDL
license, use tcounter.vhd and counter.vhd instead.

Related Reading
User's Manual Chapter: Design Libraries.

Creating the Resource Library

Before creating the resource library, make sure the modelsim.ini in your install directory is
“Read Only.” Thiswill prevent permanent mapping of resource libraries to the master
modelsim.ini file. See Permanently Mapping VHDL Resource Libraries.

1. Create adirectory for the resource library.

Create anew directory called resource_library. Copy counter.v from
<install_dir>/examples/tutorials/verilog/libraries to the new directory.

2. Create adirectory for the test bench.

ModelSim SE Tutorial, v6.5b 47

Working With Multiple Libraries
Creating the Resource Library

Create anew directory called testbench that will hold the test bench and project files.
Copy tcounter.v from <install_dir>/examples/tutorials/verilog/librariesto the new
directory.

Y ou are creating two directories in this lesson to mimic the situation where you receive
aresource library from athird-party. As noted earlier, we will link to the resource
library in the first directory later in the lesson.

3. Start Model Sim and change to the resource_library directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.

b. Select File> Change Directory and change to the resource_library directory you
created in step 1.

4. Createtheresourcelibrary.
a Select File> New > Library.
b. Typeparts lib inthe Library Name field (Figure 5-1).

Figure 5-1. Creating New Resource Library

Create a New Library e A

— LCreate

' anew library and a logical mapping to it

™ amap to an exizting librany

— Library Mame:
Iparts_lil:l

— Library Phygical Mame:

Iparts_lil:u

0k, | Cancel |

The Library Physical Name field isfilled out automatically.

Once you click OK, ModelSim creates a directory for the library, listsit in the
Library window, and modifies the modelsim.ini file to record this new library for the
future.

5. Compile the counter into the resource library.

48

ModelSim SE Tutorial, v6.5b

Working With Multiple Libraries
Creating the Project

a. Click the Compile icon on the Main window toolbar. @

b. Select the parts_lib library from the Library list (Figure 5-2).

Figure 5-2. Compiling into the Resource Library
Librane: Iparts_lil:u j

Look ir: I =) resource_library j = £ Ef-

I% parts_lib

File name: Icnunter.v Compile I
Filez of type: IHDL Files [".v;".'-.fl,'“.vhd;".vhdl;“.vhn;“.hdl;“.vj Daone |

[T Compile selected files together Default Options... | Edit Source |

c. Double-click counter.v to compileit.
d. Click Done.

Y ou now have aresource library containing a compiled version of the counter
design unit.

6. Change to the testbench directory.

a. Select File > Change Directory and change to the testbench directory you created
instep 2.

Creating the Project

Now you will create a project that contains tcounter.v, the counter’ s test bench.

1. Createthe project.
a. Select File> New > Project.
b. Typecounter inthe Project Namefield.

c. Do not change the Project Location field or the Default Library Name field. (The
default library name iswork.)

ModelSim SE Tutorial, v6.5b 49

Working With Multiple Libraries
Linking to the Resource Library

d.

e.

Make sure “Copy Library Mappings’ is selected. The default modelsim.ini file will
be used.

Click OK.

2. Add the test bench to the project.

a
b.

Click Add Existing File in the Add items to the Project dialog.

Click the Browse button and select tcounter.v in the “ Select files to add to project”
dialog.

Click Open.
Click OK.
Click Closeto dismissthe “Add itemsto the Project” dialog.

The tcounter.v fileislisted in the Project window.

3. Compile the test bench.

a

Right-click tcounter.v and select Compile > Compile Selected.

Linking to the Resource Library

To wrap up this part of the lesson, you will link to the parts lib library you created earlier. But
first, try optimizing the test bench without the link and see what happens.

Model Sim responds differently for Verilog and VHDL in this situation.

Verilog

Optimize the Verilog Design for Debug Visibility

1. Usethe vopt +acc command to optimize with full debug visibility into all design units.

a. Enter the following command at the QuestaSim> prompt in the Transcript window:

b.

vopt +acc test_counter -o testcounter_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch allows you designate the name of the optimized design
(testcounter_opt). Y ou must provide an optimized design name with vopt.

The Main window Transcript reports an error |oading the design because the counter
module is not defined.

Type quit -sim to quit the simulation.

50

ModelSim SE Tutorial, v6.5b

Working With Multiple Libraries
Linking to the Resource Library

The process for linking to aresource library differs between Verilog and VHDL. If you are
using Verilog, follow the stepsin Linking to a Resource Library. If you are using VHDL, follow
the steps in Permanently Mapping VHDL Resource Libraries one page later.

VHDL

Optimize the VHDL Design for Debug Visibility
1. Usethe vopt +acc command to optimize with full debug visibility into al design units.
a. Enter the following command at the QuestaSim> prompt in the Transcript window:
vopt +acc test_counter -0 testcounter_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch alows you designate the name of the optimized design
(testcounter_opt). Y ou must provide an optimized design name with vopt.

The Main window Transcript reports awarning (Figure 5-3). When you see a
message that contains text like "Warning: (vsim-3473)", you can view more detail
by using the verror command.

Figure 5-3. VHDL Simulation Warning Reported in Main Window

Questasim: vsim -voptargs="+acc” test_counter
vsim ~voptargs=\"+acc\” test_counter
** Note: (vsim-3312) Design is being optimized. ..

== \Warning: [1] C:ftutorials/testbench/tcounter. vhd(31): (vopt-3473) Component instance “dut : counter” is not bound,
Loading std.standard

Loading work. test_counter [only) #1 {
== Warning: (vsim-3473) Compaonent instance "dut : counter” is not bound.
Time: O ns Iteration: O Region: ftest_counter File; C:ftutarials/testbenchftcounter, vhd

V5IM 7=

Project ; counter |Nuw: Ons Delta: 0 |sjm:,|’test_munter

b. Typeverror 3473 at the VSIM> prompt.

The expanded error message tells you that a component ('dut’ in this case) has not
been explicitly bound and no default binding can be found.

c. Typequit -sim to quit the simulation.

Linking to a Resource Library

Linking to aresource library requires that you specify a"search library" when you invoke the
simulator.

ModelSim SE Tutorial, v6.5b 51

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

1. Specify asearch library during simulation.

a. Click the Simulate icon on the Main window toolbar. %

b. Click the’+" icon next to the work library and select test_counter.
c. Uncheck the Enable optimization selection box.
d. Click the Librariestab.

e. Click the Add button next to the Search Librariesfield and browseto parts libinthe
resource_library directory you created earlier in the lesson.

f. Click OK.
The dialog should have parts lib listed in the Search Librariesfield (Figure 5-4).
g. Click OK.

The design loads without errors.

Figure 5-4. Specifying a Search Library in the Simulate Dialog

i x|

Design | VHOL | Veilog Libraries] SDF | Others |]

Start Simulation

— Search Libraries [-L]

C:/modeltech/examples/rezaurce_library/parts_lib Add
bodify. ..

Drelete

—Search Libraries First [-LF]

Add
pdodify...

Delete

FEE | EEE

OF. I Cancel I

Permanently Mapping VHDL Resource Libraries

If you reference particular VHDL resource librariesin every VHDL project or ssmulation, you
may want to permanently map the libraries. Doing this requires that you edit the master

52 ModelSim SE Tutorial, v6.5b

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

modelsim.ini file in the installation directory. Though you won't actually practice it in this
tutorial, here are the steps for editing the file:

1

5.
6.

L ocate the modelsim.ini file in the Model Sim installation directory
(<install_dir>/modeltech/modelsim.ini).

IMPORTANT - Make a backup copy of thefile.

Change the file attributes of modelsim.ini so it is no longer "read-only."

Open the file and enter your library mappings in the [Library] section. For example:
parts lib = C/libraries/parts_|lib

Savethefile.

Change thefile attributes so the fileis "read-only" again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current ssmulation and close
the project.

1
2.
3.

Select Simulate > End Simulation. Click Yes.
Select the Project window to make it active.
Select File> Close. Click OK.

ModelSim SE Tutorial, v6.5b 53

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

54 ModelSim SE Tutorial, v6.5b

Chapter 6
Simulating SystemC Designs

Introduction

Model Sim treats SystemC as just another design language. With only afew exceptionsin the
current release, you can simulate and debug your SystemC designs the same way you do HDL
designs.

Note

D The functionality described in this lesson requires a systemc license feature in your
ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

There are two sample designs for thislesson. The first isavery basic design, called "basic”,
containing only SystemC code. The second design is aring buffer where the test bench and top-
level chip are implemented in SystemC and the lower-level modules are written in HDL.

The pathnames to the files are as follows:

SystemC —<install_dir>/examples/systemc/sc_basic
SystemC/Verilog —<install_dir>/examples/systemc/sc_viog
SystemC/VHDL —<install_dir>/examples/systemc/sc_vhdl

Thislesson uses the SystemC/Verilog version of the ringbuf design in the examples. If you have
aVHDL license, usethe VHDL version instead. Thereisaso amixed version of the design, but
the instructions here do not account for the slight differencesin that version.

Related Reading
User’'s Manual Chapters: SystemC Simulation, Mixed-Language Simulation, and C Debug.

Reference Manual command: sccom.

ModelSim SE Tutorial, v6.5b 55

Simulating SystemC Designs
Setting up the Environment

Setting up the Environment

SystemC is alicensed feature. Y ou need the systemc license feature in your Model Sim license
file to simulate SystemC designs. Please contact your Mentor Graphics sales representatives if
you currently do not have such afeature.

The table below shows the supported operating systems for SystemC and the corresponding
required versions of a C compiler.

Table 6-1. Supported Operating Systems for SystemC

Platform Supported compiler versions

Intel and AMD x86-based architectures (32- and | gcc 4.0.2, gcc 4.1.2

64-bit) VCO islinux (32-bit binary)

SUSE Linux Enterprise Server 9.0, 9.1, 10 VCOislinux_x86 64 (64-bit

Red Hat Enterprise Linux 3, 4, 5 binary)

Solaris 8, 9, and 10 gcc4.1.2

Solaris 10 on x86 gcc4.1.2

Windows XP, and Vista Minimalist GNU for Windows
(MinGW) gcc 4.2.1

See SystemC simulation in the Model Sm User’ s Manual for further details.

Preparing an OSCI SystemC design

For an OpenSystemC Initiative (OSCI) compliant SystemC design to run on ModelSim, you
must first:

* Replace sc_main() with an SC_MODULE, potentially adding a process to contain any
test bench code.

* Replace sc_start() by using the run command in the GUI.
* Remove callsto sc_initialize().
» Export the top level SystemC design unit(s) using the SC_ MODULE_EXPORT macro.

In order to maintain portability between OSCI and Model Sim simulations, we recommend that
you preserve the original code by using #ifdef to add the M odel Sim-specific information. When
the design is analyzed, sccom recognizes the MTI_SY STEMC preprocessing directive and
handles the code appropriately.

For more information on these modifications, refer to Modifying SystemC Source Code in the
User's Manual.

1. Create anew directory and copy thetutorial filesinto it.

56 ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs
Preparing an OSCI SystemC design

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_basic into the new directory.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

3. Useatext editor to view and edit the basic_orig.cpp file. To use Model Sim'’ s editor,
from the Main Menu select File > Open. Change the files of type to C/C++ filesthen
double-click basic_orig.cpp.

a. If you are using Model Sim’ s editor, right-click in the source code view of the
basic_orig.cpp file and uncheck the Read Only option in the popup menu.

b. Usingthe#ifdef MTI_SYSTEM C preprocessor directive, add the
SC_MODULE_EXPORT(top); to the design as shown in Figure 6-1.

c. Savethefileasbasic.cpp.

ModelSim SE Tutorial, v6.5b 57

Simulating SystemC Designs
Preparing an OSCI SystemC design

Figure 6-1. The SystemC File After Modifications.

lng | | |

3 S/ basic.cpp (modified file)

11 #include "basic.h™

12

13 #ifdef MTI SYSTEMC

15 5C MODULE EXPORT (top):

16

17 #else

15 int 3c main({ int, char*[])

20]

21 sc_clock clk:

22

23 mod a af "a"):

24 a.clk(clk):

25

26 sc_initialize():

27

28 return 0;

23 }

30 o

31 #endif ;I
Kl o

A correctly modified copy of the basic.cpp isaso available in the sc_basic/gold directory.

1. Edit thebasic_orig.h header file as shown in Figure 6-2.

a. If you are using Model Sim’ s editor, right-click in the source code view of the
basic_orig.h file and uncheck the Read Only option in the popup menu.

b. AddaModelSim specific SC_MODULE (top) as shown in lines 52 through 65 of
Figure 6-2.

The declarations that were in sc_main are placed here in the header file, in
SC_MODULE (top). This creates atop level module above mod_a, which allows
the tool’ s automatic name binding feature to properly associate the primitive
channels with their names.

58 ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs
Compiling a SystemC-only Design

Figure 6-2. Editing the SystemC Header File.

e e p— e ST
o= . b T e
- A T R v

e T

Lk] _../"F“'~_p"
)

SC_CTOR(mod &

R e L e

[Ty
I

[1=%
I

I
-1

SC METHCD(main action method |:
SC THREAD(main action thread |:

[1=%

48 SC CTHREAD(main action cthread, clk.pos() |:
9 }

o] +:

2 $#ifdef MTT SYSTEMC

3 5C MODULE (top)

5 sc_clock clk:

& mod & a;

SC_CTCR (top)

Fa OB T I s L S T T T TN o O T T 3 T o O T Y 9
[T I W]

: clk{"clk", 200, 0.5, 0.0, false),
a l: " arl
2 a.clk(clk }:
3 }
4 ¥
5 #endif -
il :

c. Savethefileasbasic.h.

A correctly modified copy of the basic.h isalso available in the sc_basic/gold
directory.

Y ou have now made all the edits that are required for preparing the design for compilation.

Compiling a SystemC-only Design

With the edits complete, you are ready to compile the design. Designs that contain only
SystemC code are compiled with sccom.

1. Settheworking library.
a. Typevlib work in the Model Sim Transcript window to create the working library.
2. Compileand link all SystemC files.
a. Type sccom -g basic.cpp at the Model Sim> prompt.
The -g argument compiles the design for debug.

b. Typesccom -link at the Model Sim> prompt to perform the final link on the
SystemC objects.

ModelSim SE Tutorial, v6.5b 59

Simulating SystemC Designs
Mixed SystemC and HDL Example

Y ou have successfully compiled and linked the design. The successful compilation verifies that
all the necessary file modifications have been entered correctly.

In the next exercise you will compile and load a design that includes both SystemC and HDL

code.

Mixed SystemC and HDL Example

In this next example, you have a SystemC test bench that instantiates an HDL module. In order
for the SystemC test bench to interface properly with the HDL module, you must create a stub
module, aforeign module declaration. Y ou will use the scgenmod utility to create the foreign
module declaration. Finally, you will link the created C object files using sccom -link.

1

Create a new exercise directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all filesfrom
<install_dir>/examples/systemc/sc_vliog into the new directory.

If you have aVHDL license, copy thefilesin <install _dir>/examples/systemc/sc_vhdl
instead.

Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at acommand shell prompt.

If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
Set the working library.
a. Typevlib work in the Model Sim Transcript window to create the working library.
Compile the design.

a. Verilog:
Typevlog *.v in the Model Sim Transcript window to compile all Verilog source
files.

VHDL:
Type vcom -93 *.vhd in the Model Sim Transcript window to compile all VHDL
source files.

Create the foreign module declaration (SystemC stub) for the Verilog module ringbuf.

60

ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs
Mixed SystemC and HDL Example

a. Verilog:
Type scgenmod -map “ scalar=bool” ringbuf > ringbuf.h at the Model Sim>
prompt.

The -map “ scalar=bool” argument is used to generate boolean scalar port types
inside the foreign module declaration. See scgenmod for more information.

VHDL.:
Type scgenmod ringbuf > ringbuf.h at the Model Sim> prompt.

The output is redirected to the file ringbuf.h (Figure 6-3).

Figure 6-3. The ringbuf.h File.
$ifndef _SCGENMOD ringkbuf

R S

$define _SCGENMOD ringkbuf

4 $include "systemc.h"

& cizzs ringbuf : public sc_foreign module

8 | public:

a sc_in<bool> clock:
10 sc_in<bool> reset:
11 sc_in<bool> txda;
12 sc_out<bool> rxda:
13 sc_out<bool> txc;
14 sc_out<bool> cutstrobe;
16
i7 ringbuf (sc_module name nm, sonst char® hdl name,
13 int num generics, const char®*® generic list)
13 sc_foreign module (nm),
20 clock ("clock™),
21 reset ("reset"),
22 txda ("txda"),
23 rxda ("rxda"),
24 tHe ("tra"),
25 outstrobe ("outatrobe™)
26
27 elaborate foreign module (hdl name, num generics, generic lis=st):
28 } - - - - -
23 ~ringbuf ()
30 {}
31
32 b
33
34 $endif
35

Thetest_ringbuf.h fileisincluded in test_ringbuf.cpp, as shown in Figure 6-4.

ModelSim SE Tutorial, v6.5b 61

Simulating SystemC Designs
Mixed SystemC and HDL Example

Figure 6-4. The test_ringbuf.cpp File

=]

f/ test ringbuf.cp

e}

1 #include "test_ringbuf.h"
12 | $include <iostream>

15 | 5C_MODULE_EXPORT (test_ringbuf):

6. Compile and link all SystemC files, including the generated ringbuf.h.

a

Type sccom -g test_ringbuf.cpp at the Model Sim> prompt.

The test_ringbuf.cpp file contains an include statement for test_ringbuf.h and a
required SC_MODULE_EXPORT (top) statement, which informs Model Sim that
the top-level moduleis SystemC.

Type sccom -link at the Model Sim> prompt to perform the final link on the
SystemC objects.

7. Optimize the design with full debug visibility.

a

Enter the following command at the Model Sim> prompt:
vopt +acc test_ringbuf -o test_ringbuf_opt

The +acc switch for the vopt command provides full visibility into the design for
debugging purposes.

The -0 switch designates the name of the optimized design (test_ringbuf_opt). You
must provide an optimized design name with vopt.

8. Load the design.

a

L oad the design using the optimized design name.

vsim test_ringbuf_opt

9. Make sure the Objects window is open and the Processes window is openin “Active’
mode, as shown in Figure 6-5. To open or close these windows, use the View menu.

62

ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs

Viewing SystemC Objects in the GUI

Figure 6-5. The test_ringbuf Design

sim o 1 H A =
|‘l'11r1513r1::e |Des.tgr1 unit |Des.u;|r1 unit type |'|irSJbI|It5|'
B\ I test_ringbuf test_ringbuf 5 = ; 4 counter
+- 3l dock sc_coreis... ScHierChannel +acc=<full: 4. reset_deactivation..
+ ol ring_INST ringbuf{fast) Module +acc==<full: rese
wP reset_generator test_ringbuf ScMethod
o generate_data test_ringbuf ScMethod
o compare_data test_ringbuf ScMethod
o print_error test_ringbuf ScMethod
W orint_restore test_ringbuf ScMethod

T —
J]thayr @mm]-

Transcript R HA =
Loading work.control (fast) ;I
Loading work. store(fast)

Loading work.retrieve(fast)
VSIM 3= —
-
|Nuw: Ons Delta: 0 |sim:ftest_ringbuf y:

Viewing SystemC Objects in the GUI

SystemC objects are denoted in the Model Sim GUI with agreen’S' in the Library window and
agreen square, circle, or diamond icon elsewhere.

1. View objectsin the Library window.

a. Click onthe Library tab and expand the work library.

SystemC objects have agreen’S' next to their names (Figure 6-6).

Figure 6-6. SystemC Objects in the work Library

s

Mame Type Path

;HIL wark Library C: ftutarialsfsystemcisc_viogfwark ’
—M _opt Optimized. .. "
—D control Module s 'n,b.lb:urials'n,systemc'n,sc_vlngfcnntrnl.v’
—D refrieve Module C: Ytutorials\systemctsc_viog fretrieve.v)
—D ringbuf Module C: Ytutarials\systemctsc_viog /ringbuf, v
—|_1 store Module C: \tutarials\systemctsc_viog/store, v
— 5] test _ringbuf ScMadule |

+| floatfixdib Library SMODEL_TECH/.. ffloatfixdib

St s NGRS TG o ol

ModelSim SE Tutorial, v6.5b

63

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

2. Observe window linkages.
a. Click on the sim tab (Structure window) to make it active.
b. Select the clock instance in the Structure window (Figure 6-7).

The Objects window updates to show the associated SystemC or HDL objects.

Figure 6-7. SystemC Objects in Structure (sim) and Objects Windows

Design unit [Design unit type |

=+al test_ringbuf test_ringbuf ScModule ! m_mt_negedg... {[2812E38] nfa} ScVariable
F dod: sC_core:s.., ScHierChannel m_mt_posedge...{[27C83C8] nfa} ScVariable
+ @l ring_INST ringbuf{fast) Module . m_mti_turn_off... false
o reset_generator test_ringbuf ScMethod m_mti_turn_off... false

o generate_data test_ringbuf ScMethod
o compare_data test_ringbuf ScMethod

o print_error test_ringbuf ScMethod Processes (Active) G
o print_restore test_ringbuf ScMethod '-INE'T'E |-|—1J"]:"E (filtered) |513
N : 4
- g",,."\‘. - SRR e - =

3. Add objects to the Wave window.

a. Inthe Structure window, right-click test_ringbuf and select Add > To Wave > All
itemsin region.

Setting Breakpoints and Stepping in the Source Window

Aswith HDL files, you can set breakpoints and step through SystemC files in the Source
window. In the case of SystemC, Model Sim uses C Debug, an interface to the open-source gdb
debugger. Refer to the C Debug chapter in the User’s Manual for complete details.

1. Before we set a breakpoint, we must disable the Auto Lib Step Out feature, which ison
by default. With Auto Lib Step Out, if you try to step into a standard C++ or SystemC
header file (<install_dir>/include/systemc), Model Sim will automatically do a step-out.

a. Select Tools> C Debug > Allow lib step from the Main menus.
2. Set abreakpoint.
a. Double-click test_ringbuf in the Structure window to open the sourcefile.

b. Inthe Source window:

64 ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Verilog: scroll to the area around line 150 of test_ringbuf.h.
VHDL: scroll to the area around line 155 of test_ringbuf.h.

c. Click inthe line number column next to the red line number of the line containing
(shown in Figure 6-8):

Verilog:bool var_dataerror_newal = actual.read()...
VHDL:sc_logic var_dataerror_newal = acutal.read ...
Note

Model Sim recogni zes that the file contains SystemC code and automatically launches C
Debug. There will be adlight delay while C Debug opens before the breakpoint appears.

Once the debugger is running, Model Sim places a solid red ball next to the line
number (Figure 6-8).

Figure 6-8. Active Breakpoint in a SystemC File

(M C:ftutorialsfsystemcfsc_vlogftest_ringpufh ——M o ——————— QO &
Lz
147 { On every negedge of the clock, compare actual and expected da
149 inline woid test_ringbuf::compare_data()
1518 bool war dataerror newval = actual.read() " !expected.read()
152 dataerror.write (var dataerror_newval);
153
154 if (reset.read() == 0)
156 storage.write(0) ;
157 expected.write (0) ;
a| 3
IMWEUE [E]test_ringbuf.hl 4| ®

3. Run and step through the code.
a. Typerun 500 at the VSIM> prompt.

When the simulation hits the breakpoint it stops running, highlights the line with a
blue arrow in the Source window (Figure 6-9), and issues a message like thisin the
Transcript:

C breakpoint c.1
test _ringbuf::conpare_data (thi s=0x27c4d08) at test ringbuf.h: 151

ModelSim SE Tutorial, v6.5b 65

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

Figure 6-9. Simulation Stopped at Breakpoint

(M C:/ftutorials/systemcfsc_vlogftest_ringbufh —MM nE

,_
=
A

15
oo -]

&

/ On every negedge of the clock, compare actual and expected da

okt
15

inlipne woid test_ringbuf::compare data()

[
1N otnoLnotnonoLnoin s

1

bool war dataerror newval = actual.read() © !expected.read()

R % I

1 dataerror.write (var_dataerrcr newval):
154 if (reset.read() == 0)
15& storage.write (0) ;

expected.write (0):

1| b
I M Wave l IC] test_ringbuf.h | ﬂ_?-l

b. Click the Step icon on the toolbar. | £+

This steps the simulation to the next statement. Because the next statement isa
function call, Model Sim steps into the function, which isin a separate file —
sc_signal.h (Figure 6-10).

Figure 6-10. Stepping into a Separate File

M C:fquestasim_&. Sbetalfindude fsystemc/sc_signal.h i £ B

Ln=#

éé-:-ﬁ | return m _cur_wval; }

442 get a reference to the current value (for tracing)

443 virtual const boolé get_data ref() const

444 sc_deprecated get_data ref(); return m cur wval; } —

446

447 '/ was there a value changed ewvent?

448 wvirtual bool event() const

449 return simcontext ()-»event occurred(m delta + 1); }

oo . hd
k
-@l?—l

[T;
l £E| Wave lEl_tESt_ri@Uﬁh | €] sc_signal.h |

c. Click the Continue Runicon in the toolbar. | (£l

The breakpoint in test_ringbuf.h is hit again.

66 ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs

Viewing SystemC Objects in the GUI

Examining SystemC Objects and Variables

To examine the value of a SystemC object or variable, you can use the examine command or

view the value in the Objects window.

1. View thevalue and type of an sc_signal.

a. Enter the show command at the CDBG > prompt to display alist of all design

objects, including their types, in the Transcript.

Inthislist, you'll seethat the type for dataerror is*“boolean” (sc_logic for VHDL)
and counter is“int” (Figure 6-11).

Figure 6-11. Output of show Command

-

CDBG 15= shaw

ptype this

public:
SC_core:
sC_core:
SC_Core:
SC_core:
sC_core:
SC_Core:
SC_core:
sC_core:
SC_core:
sC_core:
SC_Core:
SC_core:

FE L O T I L L o LR L L T FE O L FE O DR F O TR T

#} * const
type = boal

COEG 16 |

type = dass test_ringbuf : public sc_core::sc_module {

vsc_dock dodk;

isc_event reset_deactivation_event;
rsc_signal <bonl > reset;
vsc_signal<bool = tada;

rsc_signal <bool = rada;
vsc_signal<bool = tuc;

vsc_signal <bool > outstrobe;
rec_signal<sc_dtiisc_uint<20> = pseudo;
vsc_signal<sc_dtiisc_uint<20= = storage;
rsc_signal <bool > expected;
1sc_signal<bool = dataerrar;
vsc_signal <bool = actual;

int counter;

ringbuf *ring_IM5T;

void reset_generator();

void generate_data();

void compare_data();

woid print_error();

woid print_restore();
test_ringbuf{sc_core::sc_module_name);
~test_ringbuf{int);

ptype var_dataerror_newval

|Nuw: 10ns Delta: 1

|sim:ftest_ringbuffmmpare_da?

b. Enter the examine dataerror command at the CDBG > prompt.

The value returned

is"true".

2. View the value of a SystemC variable.

ModelSim SE Tutorial, v6.5b

67

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

a. Enter the examine counter command at the CDBG > prompt to view the value of
thisvariable.

The vauereturned is"-1".

Removing a Breakpoint

1. Return to the Source window for test_ringbuf.h and right-click the red ball in the line
number column. Select Remove Breakpoint from the popup menu.

2. Click the Continue Run button again.
The simulation runs for 500 ns and waves are drawn in the Wave window (Figure 6-12).

If you are using the VHDL version, you might see warnings in the Main window
transcript. These warnings are related to VHDL value conversion routines and can be
ignored.

Figure 6-12. SystemC Primitive Channels in the Wave Window

Wawe

Messages

Jtest_ringbufjcounter -40 IBEEESSREREEEREEEEEEE I N
Jtest_ringbuffreset_deactivation_event |INACTIVE F |
Jtest_ringbuffreset true

ftest_ringbuf/bda false

Jtest_ringbuffroda false

Jtest_ringbuf/tc false

Jtest_ringbufjoutstrobe

ftest_ringbuf/pseudo

Jtest_ringbuf/storage
4 ftest_ringbuffexpected false
4 [test_ringbuf/dataerror true
ftest_ringbuf/actual false

Y Ee Mow 500 ns
e Cursor 1 Ons

: I3 JE I N [T
| sm| Wave [1C] sc_signal.h [C] test_ringbufih |

- | I L]

Lesson Wrap-up

This concludes the lesson. Before continuing we need to quit the C debugger and end the
current simulation.

1. Select Tools> C Debug > Quit C Debug.

68 ModelSim SE Tutorial, v6.5b

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

2. Select Simulate > End Simulation. Click Yeswhen prompted to confirm that you wish
to quit simulating.

ModelSim SE Tutorial, v6.5b 69

Simulating SystemC Designs
Viewing SystemC Objects in the GUI

70 ModelSim SE Tutorial, v6.5b

Chapter 7
Analyzing Waveforms

Introduction

The Wave window allows you to view the results of your simulation as HDL waveforms and
their values. The Wave window is divided into a number of panes (Figure 7-1). Y ou can resize
the pathnames pane, the values pane, and the waveform pane by clicking and dragging the bar
between any two panes.

Figure 7-1. Panes of the Wave Window

messaqes bar
pathnames pane valuespane waveform pane

4 ftest counterfdk 1 i
4. Mtest counterfreset 0

B4 Jtest_counter/count 00000100 D:;*’IJDDDDDZPDDDDDDDDZDZ

* 7 Lo j

6] 50 |
[5] 5t0 |
[4] 50 !
[3l ‘
2 |
[|
ol

| 0ns to 452 ns | Mow: Qns Delta: 0 L

cursor pane

ModelSim SE Tutorial, v6.5b 71

Analyzing Waveforms
Loading a Design

Related Reading
User's Manual sections: Wave Window and Recording Simulation Results With Datasets

Loading a Design

For the examplesin this lesson, we will use the design simulated in Basic Simulation.

1. If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
2. Load the design.

a. Select File > Change Directory and open the directory you created in the “Basic
Simulation” lesson.

The work library should already exist.

b. Usethe optimized design name to load the design with vsim.
vsim testcounter_opt

Model Sim loads the design and opens a Structure (sim) window.

Add Objects to the Wave Window

Model Sim offers several methods for adding objects to the Wave window. In this exercise, you
will try different methods.

1. Add objects from the Objects window.
a. Open an Objects window by selecting View > Objects.

b. Select anitem in the Objects window, right-click, and then select Add > To Wave >
Signalsin Region.

Model Sim opens a Wave window and displays signalsin the region.
2. Undock the Wave window.

By default Model Sim opens the Wave window in the right side of the Main window.
Y ou can change the default viathe Preferences dialog (Tools > Edit Prefer ences).
Refer to the Simulator GUI Preferences section in the User’s Manual for more
information.

a. Click the undock icon on the Wave window. ﬂ

72 ModelSim SE Tutorial, v6.5b

Analyzing Waveforms
Zooming the Waveform Display

The Wave window becomes a standal one, un-docked window. Resize the window as
needed.

3. Add objects using drag-and-drop.

Y ou can drag an object to the Wave window from many other windows (e.g., Structure,
Objects, and Locals).

a. Inthe Wave window, select Edit > Select All and then Edit > Delete.
b. Drag aninstance from the Structure (sim) window to the Wave window.
Model Sim adds the objects for that instance to the Wave window.
c. Dragasignal from the Objects window to the Wave window.
d. Inthe Wave window, select Edit > Select All and then Edit > Delete.
4. Add objects using a command.
a. Typeadd wave* at the VSIM> prompt.
Model Sim adds all objects from the current region.

b. Run the simulation for awhile so you can see waveforms.

Zooming the Waveform Display

There are numerous methods for zooming the Waveform display.

1. Zoom the display using various techniques.

a Click the Zoom Mode icon on the Wave window toolbar. | 0,

b. Inthewaveform display, click and drag down and to theright.

Y ou should see blue vertical lines and numbers defining an areato zoom in
(Figure 7-2).

ModelSim SE Tutorial, v6.5b 73

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 7-2. Zooming in with the Mouse Pointer

EEDD IDDDJDDIDDJDDED

LY
i& Th
|—J-r|r 102 ng to 240 ne

c. Select View > Zoom > Zoom L ast.

The waveform display restores the previous display range.

d. Click the Zoom Inicon afew times. Cﬂ

e. Inthewaveform display, click and drag up and to the right.
Y ou should see a blue line and numbers defining an area to zoom out.

f. Sdect View > Zoom > Zoom Full.

Using Cursors in the Wave Window

Cursors mark simulation time in the Wave window. When Model Sim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform display brings
that cursor to the mouse location.

Y ou can also:

* add additional cursors;
* name, lock, and delete cursors;
e USecursorsto measuretimeintervals, and

e usecursorsto find transitions.

First, dock the Wave window in the Main window by clicking the dock icon. ¥

Working with a Single Cursor
1. Position the cursor by clicking and dragging.

74 ModelSim SE Tutorial, v6.5b

Analyzing Waveforms
Using Cursors in the Wave Window

a. Click the Select Mode icon on the Wave window toolbar. | ®

b. Click anywherein the waveform pane.

A cursor isinserted at the time where you clicked (Figure 7-3).

Figure 7-3. Working with a Single Cursor in the Wave Window

O L)
Cursor 1 319ns

1 9 | S (KT [+]]

ZII
L]

c. Drag the cursor and observe the value pane.

The signal values change as you move the cursor. Thisis perhaps the easiest way to
examine the value of asignal at a particular time.

d. Inthewaveform pane, drag the cursor to the right of atransition with the mouse
positioned over awaveform.

The cursor "snaps’ to the nearest transition to the left. Cursors "snap" to awaveform
edge if you click or drag a cursor to within ten pixels of awaveform edge. Y ou can
set the snap distance in the Window Preferences dialog (select Tools > Window
Prefer ences).

e. Inthe cursor pane, drag the cursor to the right of atransition (Figure 7-3).
The cursor doesn’t snap to atransition if you drag in the cursor pane.
2. Rename the cursor.
a. Right-click "Cursor 1" in the cursor pane, and select and del ete the text.
b. TypeA and press Enter.

The cursor name changesto "A" (Figure 7-4).

ModelSim SE Tutorial, v6.5b 75

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 7-4. Renaming a Cursor

Fl 3 I 3 1T [+]]

3. Jump the cursor to the next or previous transition.

a. Click signal count in the pathname pane.

b. Click the Find Next Transition icon on the Wave window toolbar. | =

The cursor jumps to the next transition on the selected signal.

c. Click the Find Previous Transition icon on the Wave window toolbar. | |

The cursor jumps to the previous transition on the selected signal.

Working with Multiple Cursors
1. Add asecond cursor.
a. Click the Insert Cursor icon on the Wave window toolbar.
b. Right-click the name of the new cursor and delete the text.
c. TypeB and press Enter.

d. Drag cursor B and watch the interval measurement change dynamically (Figure 7-5).

76 ModelSim SE Tutorial, v6.5b

Analyzing Waveforms
Saving and Reusing the Window Format

Figure 7-5. Interval Measurement Between Two Cursors

+ ftest_counterfcount | 00000011 (R

B 56 ns 55 ns|

2. Lock cursor B.
a. Right-click the yellow box associated with cursor B (at 56 ns).
b. Select Lock B from the popup menu.

The cursor color changes to red and you can no longer drag the cursor (Figure 7-6).

Figure 7-6. A Locked Cursor in the Wave Window

=] 56 ns

Pl 9 IE 3 |r||.

3. Delete cursor B.
a. Right-click cursor B (the red box at 56 ns) and select Delete B.

Saving and Reusing the Window Format

If you close the Wave window, any configurations you made to the window (e.g., signals added,
cursors set, etc.) are discarded. However, you can use the Save Format command to capture the
current Wave window display and signal preferencesto a.do file. Y ou open the .do file later to
recreate the Wave window as it appeared when the file was created.

ModelSim SE Tutorial, v6.5b 77

Analyzing Waveforms
Saving and Reusing the Window Format

Format files are design-specific; use them only with the design you were simulating when they
were created.

1. Saveaformat file.

a
b.

C.

In the Wave window, select File > Save Format.

In the Pathname field of the Save Format dialog, |eave the file name set to wave.do
and click OK.

Close the Wave window.

2. Load aformat file.

a
b.

e.

In the Main window, select View > Wave.

Undock the window.

All signals and cursor(s) that you had set are gone.

In the Wave window, select File > L oad.

In the Open Format dialog, select wave.do and click Open.
Model Sim restores the window to its previous state.

Close the Wave window when you are finished by selecting File > Close Window.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate > End Simulation. Click Yes.

78

ModelSim SE Tutorial, v6.5b

Chapter 8
Creating Stimulus With Waveform Editor

Introduction

The Waveform Editor creates stimulus for your design viainteractive manipulation of
waveforms. Y ou can then run the simulation with these edited waveforms or export them to a
stimulusfile for later use.

In this lesson you will do the following:

* Load the counter design unit without atest bench

» Create waves viaawizard

» Edit wavesinteractively in the Wave window

» Export the wavesto an HDL test bench and extended VCD file
* Runthe simulation

» Re-simulate using the exported test bench and VCD file

Related Reading

User’s Manual Sections. Generating Stimulus with Waveform Editor and Wave Window.

Load a Design Unit

For the examplesin thislesson, we will use part of the design simulated in Basic Simulation.

Note
Y ou can a'so use the Waveform Editor prior to loading a design. Refer to the section

Using Waveform Editor Prior to Loading a Design in the User Manual for more
information.

1. If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
2. Open aWave window.

a. Sdect View > Wave from the Main window menus.

ModelSim SE Tutorial, v6.5b 79

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

3. Load the optimized design unit.
a. Enter the following command at the Model Sim> prompt in the Transcript window.

vsim testcounter_opt

Create Graphical Stimulus with a Wizard

Waveform Editor includes a Create Pattern Wizard that walks you through the process of
creating editable waveforms.

1. Usethe Create Pattern Wizard to create a clock pattern.
a. In the Objects window, right click signal clk and select Create Wave (Figure 8-1).

Figure 8-1. Initiating the Create Pattern Wizard from the Objects Window

Objects 3
Em_m
tpd_reset_t.. Parameter Internal
tpl:l_dk_tl_l_l_ Parameter Internal
4 count » HHH Packed Array Out

= In
View Dedaration
View Memory Contents
Goto Driver

In

Add

Copy
Find...

Insert Breakpaint
Toggle Coverage

Processes (Active Farce... ' H

MoFarce Parent Path
Clack. ..

Change...

This opens the Create Pattern Wizard dialog where you specify the type of pattern
(Clock, Repester, etc.) and a start and end time.

b. The default pattern is Clock, which iswhat we need, so click Next (Figure 8-2).

80 ModelSim SE Tutorial, v6.5b

Creating Stimulus With Waveform Editor
Create Graphical Stimulus with a Wizard

Figure 8-2. Create Pattern Wizard

Create Pattern Wizard

Generate a wawveform for any signal For
khe chosen pattern,

The allowed patterns are:

Conskank

Clock,

Random

Repeater

Counker

Select the pattern in the right-hand
Frame.

Pl
Seleck Patkern
A Signal Mame
* Clack |sim:fcu::unterfcl}:
" Constant Skark Time End Time Time Lnit
I
Randarm ||:| Tooo |ns ﬂ
i Repeater
£ Counker
< Previous | Mext = | Cancel |

c. Inthesecond dialog of the wizard, enter 1 for Initial Value. Leave everything else as
isand click Finish (Figure 8-3).

Figure 8-3. Specifying Clock Pattern Attributes

sim:/counter /clk <Pattern : clock>= x|

Attributes.

Bpecify the Clock Pattern

< Previous I

— Clock Attributes
Initial % alue

|1
Clock Period Time Unit
[100 ln: wd

Dty Cycle

B

Finish |

Cancel I

A generated waveform appearsin the Wave window (Figure 8-4). Notice the small
red dot on the waveform icon and the prefix "Edit:". These items denote an editable
wave. (Y ou may want to undock the Wave window.)

Figure 8-4. The clk Waveform

ModelSim SE Tutorial, v6.5b

81

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

2. Create a second wave using the wizard.

a. Right-click signa reset in the Objects window and select Create Wave from the

popup Menu.

b. Select Constant for the pattern type and click Next.

c. Enter Ofor the Value and click Finish.

A second generated waveform appears in the Wave window (Figure 8-5).

Figure 8-5. The reset Waveform

Edit Waveforms in the Wave Window

Waveform Editor gives you numerous commands for interactively editing waveforms (e.g.,
invert, mirror, stretch edge, cut, paste, etc.). Y ou can access these commands via the menus,
toolbar buttons, or viakeyboard and mouse shortcuts. Y ou will try out several commandsin this

part of the exercise.

1. Insert apulseon signa reset.

a. Click the Edit Mode icon in the toolbar.

Tl
+]iF:
il

b. Inthe Wave window Pathnames column, click

c. Click the Insert Pulseicon in the toolbar.

i

thereset signal so it is selected.

Or, in the Wave window, right-click on the reset signal waveform and select Wave

Editor > Insert Pulse.

d. Inthe Edit Insert Pulse dialog, enter 100 in the Duration field and 100 in the Time

field (Figure 8-6), and click OK.

82

ModelSim SE Tutorial, v6.5b

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-6. Edit Insert Pulse Dialog

Edit Insert Pulse x|

Signal Hame

| Edit: /counter/reset

Diuration Time Time Uit

|100 100 In: wd
EI Ear‘u:ell

Signal reset now goes high from 100 ns to 200 ns (Figure 8-7).

Figure 8-7. Signal reset with an Inserted Pulse

O] |

2. Stretch an edge on signal clk.

a. Click the signal clk waveform just to the right of the transition at 350 ns. The cursor
should snap to the transition at 350 ns.

b. Right-click that same transition and select Wave Editor > Stretch Edge from the
popup menu.

If the command is dimmed out, the cursor probably isn’'t on the edge at 350 ns.

c. Inthe Edit Stretch Edge dialog, enter 50 for Duration, make sure the Time field
shows 350, and then click OK (Figure 8-8).

ModelSim SE Tutorial, v6.5b 83

Creating Stimulus With Waveform Editor
Edit Waveforms in the Wave Window

Figure 8-8. Edit Stretch Edge Dialog

Edit Stretch Edge x|

Signal Mame
| Edit: Acounterdclk

Direction
’75' Fonward ¢ Backward

Cruratian Time Tirne Lt

|50 | 350 .
EI Ear‘u:ell

The wave edge stretches so it is high from 300 to 400 ns (Figure 8-9).

Figure 8-9. Stretching an Edge on the clk Signal

0 0 I
Cursor 1 3530 ns m I
7 v« 3 K] O] |

Note the difference between stretching and moving an edge — the Stretch command
moves an edge by moving other edges on the waveform (either increasing waveform
duration or deleting edges at the beginning of simulation time); the Move command
moves an edge but does not move other edges on the waveform. Y ou should seein
the Wave window that the waveform for signal clk now extends to 1050 ns.

3. Delete an edge.

a. Click signal clk just to theright of the transition at 400 ns.
The cursor should "snap” to 400 ns.

b. Click the Delete Edgeicon. | 1¢-

This opens the Edit Delete Edge dialog. The Time is aready set to 400 ns. Click
OK. The edge is deleted and clk now stays high until 500 ns (Figure 8-10).

84 ModelSim SE Tutorial, v6.5b

Creating Stimulus With Waveform Editor
Save and Reuse the Wave Commands

Figure 8-10. Deleting an Edge on the clk Signal

]
Edit:/counterjck | 5t1 B
l . - |
b
0
Cursor 1 400 ns
4 vl < 3 (KT o) |

4. Undo and redo an edit.

a. ClicktheUndoicon. | ¥

The Edit Undo dialog opens, allowing you to select the Undo Count - the number of
past actions to undo. Click OK with the Undo Count set to 1 and the deleted edge at
400 ns reappears in the waveform display.

b. ClicktheRedoicon. | ¢

c. Click OK inthe Edit Redo dialog.

The edge is deleted again. Y ou can undo and redo any number of editing operations
except extending all waves and changing drive types. Those two edits cannot be
undone.

Save and Reuse the Wave Commands

Y ou can save the commands that Model Sim used to create the waveforms. Y ou can load this
"format" file at alater time to re-create the waves. In this exercise, we will save the commands,
quit and reload the simulation, and then open the format file.

1. Savethewave commandsto aformat file.

a. Select File > Closein the menu bar and you will be prompted to save the wave
commands.

b. Click Yes.

c. Typewaveedit.do in the File name field of the Save Commands dialog that opens
and then click Save.

Thissavesa DO file named waveedit.do to the current directory and closesthe Wave
window.

2. Quit and then reload the optimized design.

a. Inthe Main window, select Simulate > End Simulation, and click Y esto confirm
you want to quit simulating.

ModelSim SE Tutorial, v6.5b 85

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

b. Enter the following command at the Model Sim> prompt.

vsim testcounter_opt

3. Open the format file.
a. Select View > Wave to open the Wave window.
b. Select File> Load from the menu bar.
c. Double-click waveedit.do to open thefile.

The waves you created earlier in the lesson reappear. If waves do not appear, you
probably did not load the counter design unit.

Exporting the Created Waveforms

At this point you can run the ssmulation or you can export the created waveforms to one of four
stimulus file formats. Y ou will run the ssimulation in aminute but first let us export the created
waveforms so we can use them later in the lesson.

1. Export the created waveformsin an HDL test bench format.
a. Select File > Export > Wavefor m.

b. Select Verilog Testbench (or VHDL Testbench if you are using the VHDL sample
files).

c. Enter 1000 for End Time if necessary.

d. Type*“export” inthe File Namefield and click OK (Figure 8-11).

Figure 8-11. The Export Waveform Dialog

x
Save As

’7 " ForceFile § EVCDFile { WHDL Testbench % Verilog Testbench
Start Time End Time Time Uinit

o 1000 s =
Design Unit Mame

Ic:nunt.er
File Mame

’7| export Browse...

Ok | Cancel |

86 ModelSim SE Tutorial, v6.5b

Creating Stimulus With Waveform Editor
Exporting the Created Waveforms

Model Sim creates a file named export.v (or export.vhd) in the current directory.
Later in the lesson we will compile and simulate the file.

2. Export the created waveforms in an extended VCD format.
a. Select File > Export > Wavefor m.
b. Select EVCD File.
c. Enter 1000 for End Timeif necessary and click OK.

Model Sim creates an extended V CD file named export.ved. We will import thisfile
later in the lesson.

Run the Simulation

Once you have finished editing the waveforms, you can run the simulation.

1. Addadesignsignal.

a. Inthe Objects window, right-click count and select Add > To Wave > Selected
Signals.

The signal is added to the Wave window.

2. Run the ssimulation.

a Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-12).

Figure 8-12. The counter Waveform Reacts to Stimulus Patterns

“' +; Edit: feounter fdk
“' ;; Edit:fcounter freset [No Data

H_J
T
@re

o

Look at the signal transitions for count from 300 ns to 500 ns. The transitions occur
when clk goes high, and you can see that count follows the pattern you created when
you edited clk by stretching and deleting edges.

3. Quit the ssimulation.

ModelSim SE Tutorial, v6.5b 87

Creating Stimulus With Waveform Editor
Simulating with the Test Bench File

a. Inthe Main window, select Simulate > End Simulation, and click Yesto confirm
you want to quit simulating. Click No if you are asked to save the wave commands.

Simulating with the Test Bench File

Earlier in the lesson you exported the created waveforms to atest bench file. In this exercise you
will compile and load the test bench and then run the simulation.

1. Compile and load the test bench.

a. At the Model Sim prompt, enter viog export.v (or vcom export.vhd if you are
working with VHDL files).

Y ou should see a design unit named export appear in the work library (Figure 8-13).

Figure 8-13. The export Test Bench Compiled into the work Library

= work Libraty work
—M _opt Optimized Design
—{[/] counter Module i Tukorialexamples/tutorials
I—J expark Module C:'I,Tutnrial'l,examples'l,tutu:urial
1] test_counter Module iZ: | Tukorialjexamples tukarials
ﬂ-ﬂjl FloatFixlib Library $MODEL_TECH/ ., [Floatfixlib
ﬂ-ﬂjl ki Library $MODEL_TECH/. . [avm
1,—ﬂjl Ak Libraty $MODEL_TECH]. fovm-2.0

g e, Wd“*‘“"“""’““‘“ﬁﬂnﬂ"‘

b. Enter the following command at the Model Sim> prompt.

vsim -voptargs="+acc" export

2. Add waves and run the design.
a. AttheVSIM> prompt, type add wave *.
b. Next typerun 1000.

The waveforms in the Wave window match those you saw in the last exercise
(Figure 8-14).

88 ModelSim SE Tutorial, v6.5b

Creating Stimulus With Waveform Editor
Importing an EVCD File

Figure 8-14. Waves from Newly Created Test Bench

B4 jexportjoount
4. Jexport/dk
4. Jexportfreset

ase

3. Quit the simulation.

a. Atthe VSIM> prompt, type quit -sim. Click Y esto confirm you want to quit
simulating.

Importing an EVCD File

Earlier in the lesson you exported the created waveforms to an extended VCD file. In this
exercise you will use that file to stimulate the counter design unit.

1. Load the counter design unit and add waves.

a. Enter the following command at the Model Sim> prompt.

vsim -voptargs="+acc" counter
b. In the Objects window, right-click count and select Add > To Wave > Selected
Signals.
2. Import the VCD file.

a. Make sure the Wave window is active, then select File > Import > EVCD from the
menu bar.

b. Double-click export.vcd.

The created waveforms draw in the Wave window (Figure 8-15).

ModelSim SE Tutorial, v6.5b 89

Creating Stimulus With Waveform Editor
Importing an EVCD File

Figure 8-15. EVCD File Loaded in Wave Window

B sim:foounterfcount
""n Edit: fcounter fdk
. Edit: fcounter freset

c. Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 8-16).

Figure 8-16. Simulation results with EVCD File

=
+ o o ;I
d O Cl
a 0]
-
0 000
Cursor 1 ons (G
4 3 E 3 |>||.

When you import an EVCD file, signal mapping happens automatically if signa
names and widths match. If they do not, you have to manually map the signals. Refer

to the section Signal Mapping and Importing EVCD Filesin the User’s Manual for
more information.

Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. Atthe VSIM> prompt, type quit -sim. Click No if you are asked to save the wave
commands.

90 ModelSim SE Tutorial, v6.5b

Chapter 9
Debugging With The Dataflow Window

Introduction

The Dataflow window allows you to explore the "physical” connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs. The
window displays processes; signals, nets, and registers; and interconnect.

Note
D The functionality described in this lesson requires a dataflow license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson is atest bench that verifies a cache module and how it works
with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:
Verilog —<install_dir>/examples/tutorial s/verilog/datafl ow
VHDL —<install_dir>/examples/tutorials/vhdl/dataflow

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User’s Manual Sections. Debugging with the Dataflow Window and Dataflow Window.

Compile and Load the Design

In this exercise you will use aDO file to compile and load the design.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/dataflow to the new directory.

ModelSim SE Tutorial, v6.5b 91

Debugging With The Dataflow Window
Exploring Connectivity

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/datafl ow instead.

. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.

. Change your WildcardFilter settings.

Execute the following command:

set WildcardFilter "Variable Constant Generic Parameter SpecParam Memory
Assertion Endpoint ImmediateAssert"

With this command, you remove “CellInternal” from the default list of Wildcard filters.
Thisallowsall signalsin cellsto be logged by the ssimulator so they will bevisiblein the
debug environment.

To return the wildcard filter to its factory default settings, enter:

set WildcardFilter "default”

. Execute the lesson DO file.

a. Typedorun.do at the Model Sim> prompt.
The DO file does the following:
» Createstheworking library
* Compilesthe design files
* Optimizesthe design
* Loadsthe design into the simulator
* Addssignalsto the Wave window
* Logsall signasinthedesign

* Runsthe simulation

Exploring Connectivity

A primary use of the Dataflow window is exploring the "physical" connectivity of your design.
Y ou do this by expanding the view from process to process. This allows you to see the
drivers/receivers of a particular signal, net, or register.

92

ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Exploring Connectivity

1. Open the Dataflow window.

a. Select View > Dataflow from the menus or use the view dataflow command at the
VSIM prompt in the Transcript window.

2. Add asignal to the Dataflow window.
a. Make sureinstance p is selected in the Structure (sim) window.

b. Drag signal strb from the Objects window to the Dataflow window (Figure 9-1).

Figure 9-1. A Signal in the Dataflow Window

3. Explorethe design.
a. Double-click the net highlighted in red.
The view expands to display the processes that are connected to strb (Figure 9-2).

Figure 9-2. Expanding the View to Display Connected Processes

Select signal test on process #NAND#50 (labeled line_71 in the VHDL version) and
click the Expand net to all driversicon. 2%

ModelSim SE Tutorial, v6.5b 93

Debugging With The Dataflow Window
Tracing Events

Figure 9-3. The test Net Expanded to Show All Drivers

Notice that after the display expands, the signal line for strb is highlighted in green.
This highlighting indicates the path you have traversed in the design.

Select signal oen on process #ALWAYS#155(labeled line_84 in the VHDL version),
and click the Expand net to all readersicon. N

Continue exploring if you wish.

When you are done, click the Erase All icon. | g2

Tracing Events

Another useful debugging feature is tracing events that contribute to an unexpected output
value. Using the Dataflow window’ s embedded wave viewer, you can trace backward from a
transition to see which process or signal caused the unexpected output.

1. Add an object to the Dataflow window.
a. Make sureinstance p is selected in the Structure (sim) window.
b. Drag signal t_out from the Objects window to the Dataflow window.

c. Click the Show Waveicon ﬂ to open the Wave Viewer. Y ou may need to increase
the size of the Dataflow window to see everything (Figure 9-4).

94 ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Tracing Events

Figure 9-4. The Embedded Wave Viewer

Drakaflom

2820 ns

Cursor 1 0ns

0 ns

» 4| >||j [+]

£ Wave |: PrOC.Y ﬁDateFlnw ﬂ_?"

2. Tracetheinputs of the nand gate.

a. Select process #NAND#50 (labeled line_71 in the VHDL version) in the dataflow
flow diagram. The active display jumps to the source code view, with a blue arrow
pointing to the declaration of the NAND gate ().

Figure 9-5. Source Code for the NAND Gate

..._qfa, R T oy B
49 nor [testz, rw, Test_in);
50 &y nand (t_out, test, strh):
51
52 task write:
53 input ["addr =size-1:0] =a;
54 input ["word =size-1:0] d;
52 M beg_ln o |' Py

b. Click the Dataflow tab to jump back to the Dataflow window. All input and output
signals of the process are displayed in the wave viewer (Figure 9-6).

ModelSim SE Tutorial, v6.5b

95

Debugging With The Dataflow Window
Tracing Events

Figure 9-6. Signals Added to the Wave Viewer Automatically

Drataflow

Messages

— Inpuks:

Y Ew Mo 2820 ns

s e Cursor 1 0ns

1 2 K0 Wl

=]
— Cuukp —_—
fbop)p)t_ouk
-
RIE

£ Wave | h] proc.v | B8 Dataflow

c. IntheWave Viewer, scroll to the last transition of signal t_out.

d. Click just to theright of the last transition of signal t_out. The cursor should snap to
time 2785 ns.

e. Double-click just to theright of the last transition of signal t_out. The active display
will jump, once again, to the source code view. But thistime, thet_out signal is
highlighted (Figure 9-7).

Figure 9-7. Source Code with t_out Highlighted

TNt -
b R -

e T T e fm e Ly

45 -

49 nor [cestiZ, rw, LEst _in):
50 B nand (g oue, test, strb):

51

52 task write:

53 input ["addr size-1:0] a:
L4 input ["word size-1:0] d:

E .
wﬁ""rﬂ-f"‘mﬂi"ﬁ‘w“‘ﬁf‘#ﬂ"‘

f. Click the Dataflow tab to jump back to the Dataflow window.

96

ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Tracing Events

. Thet_out signal in the dataflow diagram should be highlighted. Select Tools >
Trace > Trace next event to trace the first contributing event.

Model Sim adds a cursor marking the last event, the transition of the strobe to O at
2745 ns, which caused the output of 1 ont_out (Figure 9-8).

Figure 9-8. Cursor in Wave Viewer Marks Last Event

Cursar 2 2745 ns

v] « 3 (KT m

Select Tools> Trace > Trace next event two more times and watch the cursor jump
to the next event.

Select Tools> Trace > Trace event set.

The dataflow flow diagram sprouts to the preceding process and shows the input
driver of the strb signal (Figure 9-9). Notice, aso, that the Wave Viewer now shows
the input and output signals of the newly selected process.

ModelSim SE Tutorial, v6.5b 97

Debugging With The Dataflow Window
Tracing an X (Unknown)

Figure 9-9. Tracing the Event Set

Drakaflow

Cursor 2 2665 ns

4 3 w4l
M Wave : proc.y [ﬁ DataFIDw] 4

Y ou can continue tracing events through the design in this manner: select Trace
next event until you get to atransition of interest in the wave viewer, and then select
Trace event set to update the dataflow flow diagram.

3. Sdect File> Close Window to close the Dataflow window.

Tracing an X (Unknown)

The Dataflow window lets you easily track an unknown value (X) as it propagates through the
design. The Dataflow window is dynamically linked to the Wave window, so you can view
signals in the Wave window and then use the Dataflow window to track the source of a
problem. Asyou traverse your design in the Dataflow window, appropriate signals are added
automatically to the Wave window.

1. Viewt_outinthe Wave and Dataflow windows.
a. Scroll in the Wave window until you can see /top/p/t_out.

t_out goesto an unknown state, StX, at 2065 ns and continues transitioning between
1 and unknown for the rest of the run (Figure 9-10). The red color of the waveform
indicates an unknown value.

98 ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Tracing an X (Unknown)

Figure 9-10. A Signal with Unknown Values

[T wave - default

e

[top)pit_out Sk

Cursar 1 2785 ns

4

-l g wave I |h] proc.v I

3K][] |]

2N [([T —

b. Double-click thet_out waveform at the last transition of signal t_out at 2785 ns.
Once again, the source code view is opened with the t_out signal highlighted.

Double-clicking the waveform in the Wave window also automatically opens a
Dataflow window and displayst_out, its associated process, and its waveform.

c. Click the Dataflow tab.

Since the Wave Viewer was open when you last closed the window, it opens again
inside the Dataflow window with thet_out signal highlighted (Figure 9-11).

ModelSim SE Tutorial, v6.5b 99

Debugging With The Dataflow Window

Tracing an X (Unknown)

Figure 9-11. Dataflow Window with Wave Viewer

Crakaflow

Cursor 1

2785 ns

1

4

I

1

I

KT

O]

2] Wave [h] proc.v | B8 Dataflow |

2. Trace the unknown.

d. Movethe cursor in the Wave Viewer.

= I

£y
%"

Asyou move the cursor in the Wave Viewer, the value of t_out changesin the flow

diagram portion of the window.

Position the cursor at atime whent_out is unknown (e.g., 2725 ns).

a. Intheflow diagram portions of the Dataflow window, make suret_out is selected.

(When selected, the trace will be orange.)

b. Seect Tools> Trace > ChaseX from the menus.

The design expands to show the source of the unknown (Figure 9-12). In this case
thereisaHiZ value (U inthe VHDL version) on input signal test_in and a0 on input
signal _rw (bar_rwinthe VHDL version). This causes the test2 output signal to
resolve to an unknown state (StX). The unknown state propagates through the design

tot_out.

100

ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 9-12. ChaseX Identifies Cause of Unknown on t_out

Drataflaw

O]

Zursor 1 2783 ns
q v « 3 I |]|
£ Wave : proc, I B8 Dataflow]

3. Clear the Dataflow window before continuing.

o m

a. Click the Erase All icon to clear the Dataflow view.

b. Click the Show Wave icon to close the Wave view of the Dataflow window.

Displaying Hierarchy in the Dataflow Window

Y ou can display connectivity in the Dataflow window using hierarchical instances. Y ou enable
this by modifying the options prior to adding objects to the window.

1. Change optionsto display hierarchy.

a. Select Dataflow > Dataflow Prefer ences > Optionsfrom the Main window menus.
(When the Dataflow window is undocked, select Tools > Options from the

Dataflow window menu bar.) Thiswill open the Dataflow Options dialog
(Figure 9-13).

ModelSim SE Tutorial, v6.5b 101

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 9-13. Dataflow Options Dialog

Dataflow Options x|

General options I Warning opkions] ﬂﬂ
v Hide cells

Display connectivity I¥ Keep Dataflow

1sing hierarchical | F* | show Hierarchy I

|instances,

Iw Eottom inout pins

MOTE: Changing this I Disable Spraut

option will cause the

cutrent contents of the [T select equivalent nets
Drataflow window to be
erased! ¥ Logrets

¥ select Environment
¥ Automatic Add to Wave

ok | Cancel |

b. Check the Show Hierarchy box and then click OK.
2. Addsigna t_out to the Dataflow window.
a. Typeadd dataflow /top/p/t_out at the VSIM> prompt.
The Dataflow window will display t_out and all hierarchical instances (Figure 9-14).

102 ModelSim SE Tutorial, v6.5b

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

Figure 9-14. Displaying Hierarchy in the Dataflow Window
Drakaflow

fia]s]
Nopip

data|

__prdy

£ Wave : proc.y lﬁ Dataflu:uw] 4|3

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

ModelSim SE Tutorial, v6.5b 103

Debugging With The Dataflow Window
Displaying Hierarchy in the Dataflow Window

104 ModelSim SE Tutorial, v6.5b

Chapter 10
Viewing And Initializing Memories

Introduction

In this lesson you will learn how to view and initialize memories. Model Sim defines and lists
any of the following as memories :

* reg, wire, and std_logic arrays
* Integer arrays
* Singledimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The installation comes with Verilog and VHDL versions of the example design located in the
following directories:

Verilog —<install_dir>/examples/tutorials/verilog/memory
VHDL —<install_dir>/examples/tutorials/'vhdl/memory

This lesson uses the Verilog version for the exercises. If you have aVHDL license, use the
VHDL version instead.
Related Reading

User's Manua Section: Memory and Memory Data Windows.

Reference Manual commands. mem display, mem load, mem save, and radix.

Compile and Load the Design
1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/memory to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/memory instead.

2. Start Model Sim and change to the exercise directory.

ModelSim SE Tutorial, v6.5b 105

Viewing And Initializing Memories
View a Memory and its Contents

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a

b.

Typevsim at a UNIX shell prompt or use the ModelSim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
Select File > Change Directory and change to the directory you created in step 1.

3. Create the working library and compile the design.

a
b.

Type vlib work at the Model Sim> prompt.

Verilog:
Typevlog *.v at the Model Sim> prompt to compile all verilog filesin the design.

VHDL:
Typevcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the Model Sim>
prompt.

4. Optimize the design

a

Enter the following command at the Model Sim> prompt:
vopt +acc ram_tb -o ram_tb_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch allows you designate the name of the optimized design (ram_tb_opt).
Y ou must provide an optimized design name with vopt.

5. Load the design.

a

Use the optimized design name to load the design with the vsim command:

vsim ram_tb_opt

View a Memory and its Contents

The Memory window lists all memory instances in the design, showing for each instance the
range, depth, and width. Double-clicking an instance opens a window displaying the memory

data.

1. Open the Memory window and view the data of a memory instance

a. If the Memory window is not aleady open, select View > Memory List.

A Memory window opens as shown in Figure 10-1.

106

ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
View a Memory and its Contents

Figure 10-1. The Memory List in the Memory window

Memory
"IInsEn::e |F‘.ange |Depﬁ1 |Wid1i1 |
~ fram_th/spram1/mem [0:4095] 4098 8
« fram_th/spram2/mem [0:2047] 2043 17
* Jjram_tbfspram3/mem [0:65535] 65536 32
1,* Jjram_th fspram4/mem [0:3] 4 16
-‘ Jjram_tb/dpram1/mem [0:15] 15]
il Ubrarvl E sim I B Memory] e

b. Double-click the /ram_th/spraml/mem instance in the memory list to view its

contents.

A Memory Data window opens displaying the contents of spraml. The first column
(blue hex characters) lists the addresses, and the remaining columns show the data

values.

If you are using the Verilog example design, the datais all X (Figure 10-2) because
you have not yet simulated the design.

Figure 10-2. Verilog Memory Data Window

Memaory Data - fram_tbfspraml fmem

ooooaaoa
oooooaos
oooo0ooa
ooooooot
ooooool4d
ooooools
oooooole
ooooooEs
nooooozs
oooooozd

N
i
HHH N
HHMEENNX
HHMEENNX
HHMEEENX
HHMEEENX
N
N
i

[T 11

A
MY
HHHHHHEY
HEHMNEEY
HEHMNEEY
HEHMNEEY
HEHMNEEY
A
A
MY

DO M MM N
PO MO
R
FOHHMEENN MENMNEEY
FOHHMEENN MENMNEEY
SO MR
SO MEEEEEEN
DO M MM N
DO M MM N
PO MO

Y
A ﬂ

A S
L S
HEMMEENE
HEMMEENE
FOMMEENEE
FHMMHEENE
A
A
A S

20|

If you are using the VHDL example design, the datais all zeros (Figure 10-3).

ModelSim SE Tutorial, v6.5b

107

Viewing And Initializing Memories
View a Memory and its Contents

Figure 10-3. VHDL Memory Data Window

Memory Daka - fram_kb/sprami frem

aooooaoa
noooaoda
nooooold
nooooole
aooooozg
QooooosE
aooooosc
aooooods
aooooasa
noooaosa
nooooosd

m 2l

]
=
]

oo oo oo oo o0
o o oo oo oo oo
o o oo oo oo oo
oo oo oo oo ooo
o o oo oo o oo oo
oo oo oo oo ooo
oo oo oo oo ooo
o o oo oo o oo oo
oo oo oo oo ooo
oo oo oo oo o oo

c. Double-click the instance /ram_tb/spram2/memin the Memory window. This opens
a second Memory Data window that contains the addresses and data for the spram2
instance. For each memory instance that you click in the Memory window, a new
Memory Data window opens.

2. Simulate the design.

a Click therun -all icon in the Main window.

A Source window opens showing the source code for the ram_tb file at the point
where the smulation stopped.

VHDL:

In the Transcript window, you will see NUMERIC_STD warnings that can be ignored
and an assertion failure that is functioning to stop the ssmulation. The simulation itself
has not failed.

b. Click the Memory ...spraml/mem tab to bring that Memory data window to the
foreground. The Verilog datafields are shown in Figure 10-4.

Figure 10-4. Verilog Data After Running Simulation

Memory Data - fram_th/spram 1fmem

00000000 |00101000 00101001 00

00000006 (00101110 00101111 o0

1
1
0000000c |00110100 00110101 €01
1
i}

[]
[)
[
[
=
L]
L]
[}
[
L
=
[
[)
[
L]
L]
L]
[}
[}
=
L]
L]

=
L]
L]
=
L]
[=]
[]

L]
[ol

00000012 (00111010 00111011 O

=]
=]
=]
|l
- T .
[T o e |

[T |
[T Sl S
[R el i
[T e |
[T ol o

[o
=

[T |

[T |

[- |
[I el S
[I el s
=
=

o
==
(==

=]
[]
L]

10 01000111 01001000
00 01001101 0

10 01010011 0
00 01011001 01011010

P Mam mamran1a mrammenn
LI _"I_I Ll'l

I B Memory ...spramlfmem] EE Memary ...=pram2 fmem l h] ram_ﬁ:.u] ﬂ_?'

f

=
o
o

[}

-
[
L]
[
L]
=)
L]
[=]
[ol

=]
3

Pt
o
o

R e B I = STl = =
o
B e T

o
PP PP
P

3=
=
e
3

L]

[]

[

(=]

-

=)
El L]
AR e
& [

[]

[e

3
M

108 ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
View a Memory and its Contents

The VHDL datafields are show in Figure 10-5.

Figure 10-5. VHDL Data After Running

Simulation

Memory Data - fram_tbfspramimem

oooooooo 4an 4] 42 43 44 45 a6 47 ﬂ
ooooooos 48 49 50 5l L2 53 L4 5L
oooooolo L6 57 5a 59 &0 6l B2 63
ooooools 64 65 1 a7 65 69 70 71
oooooozo T2 T3 T4 75 76 77 T8 79
oooooozs =41} gl g2 g3 =1 g5 1= g7
oooooozo as g9 a0 al =hes a3 a4 o5
oooooozs a6 o7 o3 99 100 1ol 102 103
ooooooan g4 105 1os 107 1oz 109 110 111

N 5]

[B Memary ...spraml,l'mem] B Memary ...spramEImeml H] ram_tl:n.\-'hdJ ﬂ_?‘l

3. Change the address radix and the number of words per line for instance
/ram_tb/spraml/mem.

a. Right-click anywhere in the spraml1 Memory Datawindow and select Properties.

b. The Properties dialog box opens (Figure 10-6).

Figure 10-6. Changing the Address Radix

x

— Addrezz Radis—] [Data Badis—
™ Hexadecimal ¥ Sumbolic
* Decimal " Binary
i~ Octal
i~ Decimal
i~ Urnsigned
i~ Hexadecimal
— Line %rap
© Fitin Windaw
' ‘wiords per Line |1_

ak

I LCanicel I

c. For the Address Radix, select Decimal. This changes the radix for the addresses

only.

d. Select Wordsper lineand type 1 inthefield.

e. Click OK.

ModelSim SE Tutorial, v6.5b

109

Viewing And Initializing Memories
View a Memory and its Contents

Y ou can see the Verilog results of the settingsin Figure 10-7 and the VHDL resultsin
Figure 10-8. If the figure doesn’t match what you have in your Model Sim session, check
to make sure you set the Address Radix rather than the Data Radix. Data Radix should
still be set to Symbolic, the default.

Figure 10-7. New Address Radix and Line Length (Verilog

Memory Data - fram_tb/spramfmem

0olol0oa i’

oololool
oolololao
oolololl
oolol1oa0
oolollol
0ol0lllad
oolollll

nol 1nnmm
[T [25|

I B Memory ...spraml,l'mem] B Memory ...spramz mem l |h] ram_tl:u.v] ﬂ_?—'

O =1 o s L O

Figure 10-8. New Address Radix and Line Length (VHDL)

Memary Data - fram_tbfsprami frmem

40 :EJ
41

4z

43

44

45

46

a7

45

o oEn x|

I B Memary . ..spramil/mem] E Memary ...spramz,l'meml H] ram_tb.vhd ﬂﬁl

)

L= R e R N R

Navigate Within the Memory

Y ou can navigate to specific memory address locations, or to locations containing particular
data patterns. First, you will go to a specific address.

1. Use Goto to find a specific address.
a. Right-click anywhere in address column and select Goto (Figure 10-9).
The Goto dialog box opensin the data pane.

110 ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
View a Memory and its Contents

Figure 10-9. Goto Dialog

x
Goto Addreszs
|7|3EI

ak. I Cancel I

b. Type 30in the Goto Addressfield.
c. Click OK.
The requested address appears in the top line of the window.
2. Edit the address location directly.
a. Toquickly moveto aparticular address, do the following:
i. Double click address 38 in the address column.

ii. Enter address 100 (Figure 10-10).

Figure 10-10. Editing the Address Directly

Memory Data - fram_th/spram 1fmem

30 |ol000110
31 |o1000111
32 |o1001000
33 |o1001001
34 |ol001010
35 |ol001011
36 |01001100
37 |olo001101
100 01001110

4| i N =

I B mMemary ...spramlfmem] FH Memory ...spram2/mem l h] ram_ﬁ:.u] 43

L

iii. Pressthe Enter or Return key on your keyboard.
The pane jumps to address 100.
3. Now, let'sfind a particular data entry.
a. Right-click anywhere in the data column and select Find.
The Find in dialog box opens (Figure 10-11).

ModelSim SE Tutorial, v6.5b 111

Viewing And Initializing Memories
Export Memory Data to a File

Figure 10-11. Searching for a Specific Data Value

Find in /ram_tb/spramil /mem El

— Find Data Find Mest |
Pattern: (11111016

& glob (E.g. 1234, 101 011, *05?, 'hfa3g) | _Feplace

.
SR Feplace Al

Replace with: |

™ Find backwards Close

b. Verilog: Type 11111010 in the Find data: field and click Find Next.
VHDL: Type 250 in the Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next afew more
times to search through the list.

c. Click Close to close the dialog box.

Export Memory Data to a File

Y ou can save memory datato afile that can be loaded at some later point in simulation.

1. Export amemory pattern from the /ram_tb/spraml/meminstance to afile.
a. Make sure/ram_tb/spraml/mem s open and selected.

b. Select File> Export > Memory Data to bring up the Export Memory dialog box
(Figure 10-12).

112 ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
Export Memory Data to a File

Figure 10-12. Export Memory Dialog

Export Memory x|

— Instance Mame
Irar_tbjsprami fmem

— #Address Range
= al

" aAddresses {in decimal)

Start |0 End |4095
File Format
£ Yerilog Hex [Mo addresses
" verilog Binary [T Compress
&+ M1
— Address Radiz) [Data Radiz—
" Hexadecimal " Symbalic
% Decimal % Binary
" Octal
" Decimal
" Unsigred
" Hexadecimal

—Line YWrap
£~ Fit in Windaow

% words per Line I]_

File Save

Filename |data mem. menl Browse. ..

[8]4 | Cancel |

For the Address Radix, select Decimal.
For the Data Radix, select Binary.

e o

e. For theLine Wrap, set to 1 word per line.

f. Typedata mem.mem into the Filename field.
g. Click OK.

Y ou can view the exported file in any editor.

Memory pattern files can be exported as rel ocatable files, smply by leaving out the
address information. Rel ocatable memory files can be loaded anywhere in a memory
because no addresses are specified.

ModelSim SE Tutorial, v6.5b 113

Viewing And Initializing Memories
Initialize a Memory

2. Export arelocatable memory pattern file from the /ram_th/spram2/mem instance.

a
b.

C.

Select the Memory Data window for the /ram_tb/spram2/mem instance.
Right-click on the memory contents to open a popup menu and select Properties.

In the Properties dialog, set the Address Radix to Decimal; the Data Radix to
Binary; and the Line Wrap to 1 Words per Line. Click OK to accept the changes
and close the dialog.

Select File > Export > Memory Data to bring up the Export Memory dialog box.
For the Address Range, specify a Start address of 0 and End address of 250.

For the File Format, select MTI and No addr esses to create a memory pattern that
you can use to relocate somewhere else in the memory, or in another memory.

g. For Address Radix select Decimal, and for Data Radix select Binary.

For the Line Wrap, set 1 Wordsper Line.

. Enter the file name as reloc.mem, then click OK to save the memory contents and

close the dialog. You will use thisfile for initialization in the next section.

Initialize a Memory

In ModelSim, it is possible to initialize amemory using one of three methods: from an exported
memory file, from afill pattern, or from both.

First, let’sinitialize amemory from afile only. Y ou will use the one you exported previously,
data_mem.mem.

1. View instance /ram_tb/spram3/mem.

a

Double-click the /ram_tb/spram3/mem instance in the Memories tab.

Thiswill open anew Memory Data window to display the contents of
/ram_tb/spram3/mem. Familiarize youself with the contents so you can identify
changes once the initialization is complete.

Right-click and select Properties to bring up the Properties dialog.

Change the Address Radix to Decimal, Data Radix to Binary, LineWrap to 1
Words per Line, and click OK.

2. Initialize spram3 from afile.

a

Right-click anywhere in the data column and select Import Data Patternsto bring
up the Import Memory dialog box (Figure 10-13).

114

ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
Initialize a Memory

Figure 10-13. Import Memory Dialog

Import Memory El

—Instance Mame

Jram_thb/spram3fmem

— Load Type Address Range
= File only & al
" Data Only " Addresses (in decimal)
" Both File and Data Start |0 End |65535
—File Load
— File Farmat [Update Properties
" verilog Hex

" Yerilog Binary Loading Mode

£ MTI
¥ specified in File

¥ Incremental

£ Mo Incremental

Filenarne

data mem. mertl Browse, ..

—[rata Load
—Fill Type Fill Data
& yalue I
£ Increment
" Decrement Skip
£ Random |D wiord(s)

Ik Cancel

The default Load TypeisFile Only.
b. Typedata_mem.memin the Filename field.
c. Click OK.

The addresses in instance /ram_tb/spram3/mem are updated with the datafrom
data_mem.mem (Figure 10-14).

ModelSim SE Tutorial, v6.5b 115

Viewing And Initializing Memories
Initialize a Memory

Figure 10-14. Initialized Memory from File and Fill Pattern

Memory Data - fram_th/spram3/mem

Kl

JoET 2=

HH Memory ...spram1/mem l HH Memory ...spram2/mem l |h] ram_tb.v I B Memory ...spram3/mem]-ﬂil

In this next step, you will experiment with importing from both afile and afill pattern.
Y ou will initialize spram3 with the 250 addresses of data you exported previously into

the

relocatablefile reloc.mem. You will also initialize 50 additional address entrieswith

afill pattern.

Import the /ram_tb/spram3/mem instance with a relocatable memory pattern
(reloc.mem) and afill pattern.

a

Right-click in the data column of spram3 and select Import Data Patter nsto bring
up the Import Memory dialog box.

For Load Type, select Both File and Data.

For Address Range, select Addresses and enter 0 as the Start address and 300 as the
End address.

This means that you will be loading the file from 0 to 300. However, the reloc.mem
file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with
thefill data you specify next.

For File Load, select the MTI File Format and enter reloc.mem in the Filename
field.

For Data Load, select aFill Type of Increment.
Inthe Fill Datafield, set the seed value of O for the incrementing data.
Click OK.

View the data near address 250 by double-clicking on any address in the Address
column and entering 250.

Y ou can see the specified range of addresses overwritten with the new data. Also, you
can see the incrementing data beginning at address 251 (Figure 10-15).

116

ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-15. Data Increments Starting at Address 251

Mernory Daka - frarm_tbispram3)mern

250 (00000000000000000010010000100010 3
251 |0000o000o0o0oo0oooo0oooo0ooaoona0
252 |00000000000000000000000000000001
253 |00000000000000000000000000000010
254 |000000000o0ooo0aoooaoooooonoonll
255 |00000000000000000000000000000100
£56 |00000000000000000000000000000101
257 |00000000o0o0ooo0aoooaoooaoonaollo

Co [pinininintainintntnininlinliginininiaininintainininintninialh B in |
1 I II*II PI vI

B Memory ...spraml,l'meml B Memary ...spramz/menm l |h] ram_th.v I B Memary ...spram3jimern]*él ?‘l

Now, before you leave this section, go ahead and clear the memory instances already
being viewed.

4. Right-click in one of the Memory Data windows and select Close All.

Interactive Debugging Commands

The Memory Data windows can also be used interactively for avariety of debugging purposes.
The features described in this section are useful for this purpose.

1. Open amemory instance and change its display characteristics.
a. Double-click instance /ram_tb/dpraml/memin the Memories window.
b. Right-click in the dpraml Memory Data window and select Properties.
c. Changethe Address and Data Radix to Hexadecimal.
d. Select Wordsper line and enter 2.
e. Click OK. Theresult should be asin Figure 10-16.

Figure 10-16. Original Memory Content

Memory Data - fram_th/dpram 1/mem

=]
=31
L]
L
I

0000909000

-]
=]
=]
=]
=]
-]
=]
8]
-1
ai
=
[+3

3]
[
=N

-
=
-
-
-
-
-
(K]

[I T S R S I e
L=)]
I
=

[= I S]

[R 1 21|
k] ram_th.v IE Memory ...dpram1/mem | ﬂi‘l

ModelSim SE Tutorial, v6.5b 117

Viewing And Initializing Memories
Interactive Debugging Commands

2. Initialize arange of memory addresses from afill pattern.

a. Right-click in the data column of /ram_tb/dpraml/mem and select Change to open
the Change Memory dialog (Figure 10-17).

Figure 10-17. Changing Memory Content for a Range of Addresses**OK

Change Memory x|

— Instance Mame
Jram_tbfdpram1mem

— #Address Range Fill Tvpe
 al i value

* aAddresses {in hexadecimal) € Increment

™ Decrement

Stark |0x 00000006 End | 000000003
{* Random
Fill Drata Skip
I':l IIII word(s)
[0]4 | Cancel | Apply |

b. Select Addresses and enter the start address as 0x00000006 and the end address as
0x00000009. The "0x" hex notation is optional.

c. Select Random asthe Fill Type.
d. Enter 0 asthe Fill Data, setting the seed for the Random pattern.
e. Click OK.

The data in the specified range are replaced with a generated random fill pattern
(Figure 10-18).

Figure 10-18. Random Content Generated for a Range of Addresses

Memory Data - fram_th/dpram 1/mem

aoooannn o 03

goooonne |od 31

-
-
-
-
-
-
-
2l
3
3
¥

-]
-]
-]
-]
-]
-]
-]
]
| 8
[= T O 8
|
e R R

4] v _*l;l
h]ram_tb.v IE Memary ...dpram1/mem | il:‘l

3. Change contents by highlighting.

118 ModelSim SE Tutorial, v6.5b

Viewing And Initializing Memories
Interactive Debugging Commands

Y ou can aso change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses 0x0000000c: 0x0000000g, as shown in
Figure 10-19.

Figure 10-19. Changing Memory Contents by Highlighting

Memory Data - fram_tb/dpram 1/mem

00000000 o0& 03 :I

<] 4] M=
h]ram_tb.v IE Memary ...dpram1/mem | ﬂi’l

b. Right-click the highlighted data and select Change.

This brings up the Change memory dialog box (Figure 10-20). Note that the
Addresses field is aready populated with the range you highlighted.

Figure 10-20. Entering Data to Change**OK

Change Memory |

— Instance Mame

fram_tbfdpram1 fmem

— #ddress Range Fill Tvpe
e al ¥ Yalue
¥ pddresses (in hexadecimal) " Increment
i~ Decrement

Stark [0000000¢c End |0000000&
" Randam
Fill Data Skip
|34 35 34 ||:| word(s)
0K | Cancel | Apply |

c. Select ValueastheFill Type.
d. Enter the data valuesinto the Fill Datafield asfollows: 34 35 36
e. Click OK.
The data in the address |ocations change to the values you entered (Figure 10-21).

ModelSim SE Tutorial, v6.5b 119

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 10-21. Changed Memory Contents for the Specified Addresses

Memory Data - fram_th/dpram 1fmem

ooooooon los o3 ;I

aooonnn? |72 1k

00000004 |1c 14

4] 4] I

|
|h] ram_tb.w [E Memary ...dpram1/mem | ﬂi‘l

4. Edit datain place.
To edit only one value at atime, do the following:
a. Double click any value in the Data column.
b. Enter the desired value and press the Enter or Return key on your keyboard.
If you needed to cancel the edit function, press the Esc key on your keyboard.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Smulate> End Simulation. Click Yes.

120 ModelSim SE Tutorial, v6.5b

Chapter 11
Analyzing Performance With The Profiler

Introduction

The Profiler identifies the percentage of simulation time spent in each section of your code as
well as the amount of memory allocated to each function and instance. With this information,
you can identify bottlenecks and reduce simulation time by optimizing your code. Users have
reported up to 75% reductions in simulation time after using the Profiler.

This lesson introduces the Profiler and shows you how to use the main Profiler commandsto
identify performance bottlenecks.

Note
D The functionality described in this tutorial requires a profile license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The example design for thislesson consists of afinite state machine which controls abehavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/profiler
VHDL —<install_dir>/examples/tutorials/vhdl/profiler_sm seq

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the
VHDL version instead.

Related Reading
User’s Manual Chapters. Profiling Performance and Memory Use and Tcl and Macros (DO
Files).

Compile and Load the Design

1. Create anew directory and copy thetutorial filesinto it.

ModelSim SE Tutorial, v6.5b 121

Analyzing Performance With The Profiler

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/profiler to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorials/vhdl/profiler_sm seq instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create thework library.
a Typevlib work at the Model Sim> prompt.
4. Compilethe design files.

a. Verilog: Typevlogtest_sm.v sm_seq.v sm.v beh_sram.v at the Model Sim>
prompt.

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the
Model Sim> prompt.

5. Optimize the design.
a. Enter the following command at the Model Sim> prompt in the Transcript window:
vopt +acc test_sm -0 test_sm_opt

The +acc switch for the vopt command provides visibility into the design for
debugging purposes.

The -0 switch alows you designate the name of the optimized design (test_sm_opt).
Y ou must provide an optimized design name with vopt.

6. Load the optimized design unit.
a. Enter vam test_sm_opt at the Model Sim> prompt.

Run the Simulation
Y ou will now run the simulation and view the profiling data.

1. Enablethe statistical sampling profiler.

a. Select Tools> Profile > Performance or click the Performance Profilingiconin

the toolbar. ﬂ

122 ModelSim SE Tutorial, v6.5b

Analyzing Performance With The Profiler

This must be done prior to running the simulation. Model Sim is now ready to collect

performance data when the smulation is run.

2. Run the smulation.

a. Typerun 1msattheVSIM> prompt.

Notice that the number of samples taken is displayed both in the Transcript and the
Main window status bar (Figure 11-1). (Y our results may not match thosein the
figure.) Also, Model Sim reports the percentage of samples that were taken in your
design code (versusin internal simulator code).

Figure 11-1. Sampling Reported in the Transcript

Tranzcrpt

#
#
#
#
#
#
#
#

#

WEIM 45 |

933111 illegal op received
999155 outof = 000000

993495 outof = 00000023
999555 autaf = 000000BE
999615 outof = 000000cc
993675 outof = 000000cd
999735 autaf = 000000z
935751 illegal op received
999795 nutnf = ONOOAM

Prafiling paused. 1871 zamples taken [73% in user code]

|N|:|w: 1 ms Delta: 2 | Profile Samples: 181

3. Digplay the statistical performance datain the Profile pane.

a. Select View > Profiling > Profile.

The Profile pane (you may need to increase its size) displays four tab-selectable
views of the data—Ranked, Design Units, Call Tree, and Structural (Figure 11-2).
(Your results may not match those in the figure.)

ModelSim SE Tutorial, v6.5b

123

Analyzing Performance With The Profiler

Prafile

Figure 11-2. The Profile Window

‘l"IName |Underl{raw}|ln(raw} |Lln|:|er|{°.f.:-]| |Inl{°.f-:.]| | |
Tel_\aitFarEvent 72 T2 53.3% 53.3%
besk_sm.v:105 as 17 £3.0% 12.6%:

s 73 17 = 12.6%: 3.7%
TolpHasSockets 4 3 3.0% 2.2%
Tol_GetTime 3 3 2.2%: 2.2%
Lest_sm, w92] 3 2.2% 2.2%
Tol_OpenTopServer z2 2 1.5% 1.5%
Tel_DoDneEyvent 79 0 55.5% 0.0%:
Tel_DeleteTimerHandler 3 1] 2.2% 0.0%:
Tcl_Flush 2 0 1.5% 0.0%
-I Ranked | Design Uniks l Call Tree l Skructural ‘ ﬂil

The table below gives a description of the columns in each tab. For more details on

each pane, refer to the section Viewing Profiler Results in the User’s Manual.

Table 11-1. Columns in the Profile Window

Column

Description

Count

(Design Unit view only) quantity of design objects analyzed

Under(raw)

the raw number of Profiler samples collected during the
execution of afunction, including all support routines under
that function; or, the number of samples collected for an
instance, including al instances beneath it in the structural
hierarchy

In(raw)

the raw number of Profiler samples collected during a
function or instance

Under(%0)

theratio (as a percentage) of the samples collected during the
execution of afunction and all support routines under that
function to the total number of samples collected; or, theratio
of the samples collected during an instance, including all
instances beneath it in the structural hierarchy, to the total
number of samples collected

In(%)

the ratio (as a percentage) of the total samples collected
during afunction or instance

%Parent

(not in the Ranked view) the ratio (as a percentage) of the
samples collected during the execution of a function or
instance to the samples collected in the parent function or
instance

124

ModelSim SE Tutorial, v6.5b

Analyzing Performance With The Profiler

Datain the Ranked view is sorted by default from highest to lowest percentagein the
In(%) column. In the Design Unit, Call Tree, and Structural views, dataiis sorted (by
default) according to the Under(%) column. Y ou can click the heading of any
column to sort data by that column.

The"Tcl_*" entries are functions that are part of the internal simulation code. They
are not directly related to your HDL code.

b. Click the Design Unit tab to view the profile data organized by design unit.

Figure 11-3. Design Unit Performance Profile

"Ir'-.lame |C|:|unt |Under(raw}|1n{raw} |Under|{°.-1:.]| |Inl{°.f.:.]| |%F‘arent ||
SM_Sen 1 1 1 0, 7% 0.7%
=}—=m 1 17 17 12.6%: 12.6%:
—F sman T3 17 5 12.6%: 3.7% 100%:
=+ 'El_DDDnEEvent 11] 2. 1% 0,0%: B5%
Tel_\waitFaorEvent 11 11 g, 1% 1% 100%:
beh_sram 1 1 1 0, 7% 0,7%
=kesk_sm 1 an a0 66, 7% B, 7%
-} test_sm.w 105 a5 17 63.0% 12.6%: 0%
+} Tol_DoCneEwvent [t] S0.4% 0.0% 0%
best_sm.v:92 3 3 2. 2% 2.2% 3%
Ranked | Design Units | Call Tree l Struckural I ﬂil

c. Click the Call Treetab to view the profile datain a hierarchical, function-call tree
display.

Theresults differ between the Verilog and VHDL versions of the design. In Verilog,
line 105 (test_sm.v:105) is taking the majority of simulation time. In VHDL,
test_sm.vhd: 203 and sm.vhd: 93 are taking the majority of the time.

Note
D Y our results may look slightly different as a result of the computer you’ re using and

different system calls that occur during the simulation. Also, the line number reported
may be one or two lines off in the actual source file. This happens due to how the
stacktrace is decoded on different platforms.

d. Verilog: Right-click test sm.v:105 and select Expand All from popup menu. This
expands the hierarchy of test sm.v:105 and displays the functions that call it
(Figure 11-4).

VHDL : Right-click test_sm.vhd: 203 and select Expand All from popup menu. This
expands the hierarchy of test sm.vhd: 203 and displays the functions that call it.

ModelSim SE Tutorial, v6.5b 125

Analyzing Performance With The Profiler
View Profile Details

Figure 11-4. Expand the Hierarchical Function Call Tree

R
"IName |Under{raw}|1n{raw} |Lln|:|er{°.fo]| |In{°.f-:-]l |°.f-:-F‘arent ||
=

= Tcl_DoCneEvent [atad 0 50.4% 0.0% 0%
Tel_wWaitForEvent =3 61 45.2% 45, 2% Q0%
TclpHasSockets 3 3 2.2% 2.2% 4%
—} Tol_DeleteTimerHandler 3 0 2.2% 0.0% 4%
Tel_zekTime 3 3 2.2% 2.2% 100%%
=& T3 17 = 12.6% 3.7% 16%:
= Tel_DoCneEvent 11 0 8.1% 0.0% B5%s
Tel_waitForEvent 11 11 8.1% 8.1% 100%%
kesk_srm. w92 3 3 2.2% 2.2% 3%

I Ranked l Design Units I Call Tree | Structural I EIE

4. View the source code of aline that isusing alot of simulation time.

a. Verilog: Double-click test_sm.v:105. The Source window opensin the MDI frame
with line 105 displayed (Figure 11-5).

VHDL : Double-click test_sm.vhd: 203. The Source window opensin the MDI frame
with line 203 displayed.

Figure 11-5. The Source Window Showing a Line from the Profile Data

m C:4T utorial/examplestutonialsenlogAprofiler ftezt_zm. v
ln # -
102 always @(posedge clk)
103 outof = #5 out wire; // put ocutput in register
104
105 always @ (ocutof) // any change of outef
106 i rfoutef = 5h", cutof); =
1a7
108 integer 1i; -

I8 3

M wave | |h] test_smv I ﬂ_?'|

View Profile Detalils

The Profile Details pane increases visibility into simulation performance. Right-clicking any
function in the Ranked or Call Tree views in the Profile pane opens a popup menu that includes
a Function Usage selection. When you select Function Usage, the Profile Detail s pane opens
and displays all instances that use the selected function.

126 ModelSim SE Tutorial, v6.5b

Analyzing Performance With The Profiler
Filtering and Saving the Data

1. View the Profile Details of afunction in the Call Tree view.

a. Right-click the Tcl_WaitForEvent function and select Function Usage from the
popup menu.

The Profile Details pane displays all instances using function Tcl_WaitFor Event
(Figure 11-6). The statistical performance data show how much simulation timeis
used by Tcl_Close in each instance.

Figure 11-6. Profile Details of the Function Tcl_Close

Profile Details

Instances using funckion: Tel_WaitForEvent

‘l"lr'-.lame |Lln|:|er|{raw]| |In{raw]| |Lln|:|er|{°f.:.]| |In(%]| "
ol ftest_sm Gl = 45, 2% 45.2%:
Bl test_smjsm_seqdfsm_0 11 11 8.1% 8.1%

When you right-click a selected function or instance in the Structural pane, the popup menu
displays either a Function Usage selection or an Instance Usage selection, depending on the
object selected.

1. View the Profile Details of an instance in the Structural view.
a. Select the Structural tab to change to the Structural view.
b. Right-click test_smand select Expand All from the popup menu.

c. Verilog: Right-click the sm 0 instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
ltest_sm/sm _seqO/sm O (Figure 11-7).

Figure 11-7. Profile Details of Function sm_0

Profile Detaily —M8M8M8¥ ™ NG

|nztances with zame definition az ftest_zmdzm_zeqldzm_0
'l"IName |L|nu:|er[raw] ||n[raw] |L|n|:|er[?é] ||n[3é] |
o Aest_smdsm_zeqldizn_0 15 15 a.3% 8.3%

VHDL: Right-click the dut instance and select | nstance Usage from the popup
menu. The Profile Details shows all instances with the same definition as
/test_sm/dut.

Filtering and Saving the Data

Asalast step, you will filter out lines that take less than 3% of the simulation time using the
Profiler toolbar, and then save the report data to atext file.

ModelSim SE Tutorial, v6.5b 127

Analyzing Performance With The Profiler
Filtering and Saving the Data

1. Filter linesthat take less than 3% of the simulation time.
a. Click the Call Treetab of the Profile pane.
b. Change the Under (%) field to 3 (Figure 11-8).

Figure 11-8. The Profiler Toolbar

| | s oEA 00 v

If you do not see these toolbar buttons, right-click in a blank area of the toolbar and
select Profile.

c. Click the Refresh Profile Data button. | €

Model Sim filters the list to show only those lines that take 3% or more of the
simulation time (Figure 11-9).

Figure 11-9. The Filtered Profile Data

'l"ll"-.lame |Under{raw}|ln(raw} |Lln|:|er|:°.-"o]| |In{°.-"o:l |°.-"-:~F‘arent | |
——kest_sm.vi105 g5 17 63, 0% 12.6% FE%a
=} Tel_DoCneEvent it] 50, 4% 0.0% 0%
Tel_twaitForEvent 61 Bl 45, 2% 45, 2% 0%
——sm.wiF3 17 5 12.6% 3.7% 16%
=} Tcl_DoCneEvent 11] 8.1% 0.0% 65%:
Tcl_WaitForEvent 11 11 G3.1% 8.1% 100

I Ranked l Design Units I Call Tree I Skructural I EIE

2. Savethereport.

a. Click thesaveicon inthe Profiler toolbar. | [&

b. Inthe Profile Report dialog (Figure 11-10), select the Call Tree Type.

128 ModelSim SE Tutorial, v6.5b

Analyzing Performance With The Profiler
Filtering and Saving the Data

Figure 11-10. The Profile Report Dialog

Profile Repork x|

~Type —Performance [Memory data
& Call Tree
i~ Ranked
~ an {* Default {data collected)
Skruckural
s " Performance only
Fook{opk): I

" Memaory only

[T Include funckion call hisrarche Y T

[T sSpecify structure level

R

= Callers and Callees

—Cutoff percent

Funickion: I

" Funckion ko instance

Funckion; I " Defaulk (D%

. e
i~ Instances using same definition " Specify I 3 EI

Instance: I

Cakpuk
™ write ta transcript
1+ write ko file Iu:alltree. rp Browse. ..
v “iew File
(0] 4 | Cancel |

In the Performance/Memory data section select Default (data collected).

e o

Specify the Cutoff percent as 3%.
Select Writeto file and type calltree.rpt in the file name field.

@

f. View fileis selected by default when you select Writeto file. Leave it selected.
g. Click OK.
The calltree.rpt report file will open automatically in Notepad (Figure 11-11).

ModelSim SE Tutorial, v6.5b 129

Analyzing Performance With The Profiler
Filtering and Saving the Data

Figure 11-11. The calltree.rpt Report

=

File Edit Window

£ callkree.rpt |

vainm 6.4 Beta 1 S3imulator 2005.04 Apr & 2008
Platform: winiZ
Calltree profile generated Wed ipr 09 13:10:09 2003
Mimber of samples: 135
Nunbher of samples in user code: 109 [(81%)
Cutoff percentage: 3%
Eeep unknouwn: 0
Collapse sections: O
Collect callstacks: O
Memory trim height: 0O
Keep free: 1
Profile data: wsimk [(Model3im kernel)

Name Underiraw) In(raw)] Under(%) In(%) %Parent
test_sm.w:l05 g5 17 3.0 1.6 T3
Tcl_DodneEvent ad a 50.4 n.a g
Teocl_WaitForEvent ol 6l 45.2 45.2 an
sm.w: 73 17 5 12.8 3.7 1A
Tel _DolneEwent 11 n g.1 n.a 65
Tel_WaitForEwent 11 11 g.1 g.1 100

calleree. rpk | ﬂﬂ

Y ou can also output this report from the command line using the profile report
command. See the Model Sm Command Reference for details.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

Select Simulate > End Simulation. Click Yes.

130 ModelSim SE Tutorial, v6.5b

Chapter 12
Simulating With Code Coverage

Introduction

Model Sim Code Coverage gives you graphical and report file feedback on which executable
statements, branches, conditions, and expressions in your source code have been executed. It
also measures bits of logic that have been toggled during execution.

Note
D The functionality described in this lesson requires a coverage license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/coverage
VHDL —<install_dir>/examples/tutorials/vhdl/coverage

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, we distinguish between the Verilog and VHDL
versions of the design.

Related Reading
User's Manual Chapter: Code Coverage.

Compile the Design

Enabling Code Coverage is a simple process: Y ou compile the design files and identify which
coverage statistics you want to collect. Then you load the design and tell Model Sim to produce
those statistics.

1. Create anew directory and copy thetutorial filesinto it.

ModelSim SE Tutorial, v6.5b 131

Simulating With Code Coverage

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/modeltech/examples/tutorial s/verilog/coverage to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/modeltech/examples/tutorials/'vhdl/coverage instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a. Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Create the working library.
a Typevlib work at the Model Sim> prompt.
4. Compileall design files.
a. For Verilog—Typevlog *.v at the Model Sim> prompt.
For VHDL — Type vcom *.vhd at the Model Sim> prompt.
5. Designate the coverage statistics you want to collect.
a. Typevopt +cover=bcsxf test_sm -otest_sm_opt at the Model Sim> prompt.

The +cover =bcsxf argument instructs Model Sim to collect branch, condition,
statement, extended toggle, and finite state machine coverage statistics. Refer to the
section Code Coverage Typesin the User’s Manual for more information on the
available coverage types.

The -0 argument is used to designate a name (in this case, test_ sm_opt) for the
optimized design. This argument is required with the vopt command.

Note
By default, Model Sim optimizations are performed on all designs (see Optimizing
Designs with vopt).

Load and Run the Design
1. Loadthedesign.

a. Enter vsim -coveragetest_sm_opt at the Model Sim> prompt. (The optimized
design isloaded.)

The Coverage windows will open as shown in Figure 12-1.

132 ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage

Figure 12-1. Coverage Windows

Missed Statements - by instance

Missed Staternents =
—HyL] test_zun.v
—¥ 24 #
¥ 24 into = | . b:
—X 31 # —
¥ 31 into = . ¥
—}{ 3z @ [(pozedoge clk)

W — " ~|
l@ Stakement @ Branch l @ Condition l E Expression IE Toggle lE F3r l@ Details] ﬂ_?-|

2. Run the ssimulation

a. Typerun 1 msat the VSIM> prompt.

When you load a design with Code Coverage enabled, Model Sim adds several coverage data
columnsto the Files and Structure (sim) windows (Figure 12-2). Use the horizontal scroll bar to
see more coverage data columns. (Y our results may not match those shown in the figure.)

sim {Local

Figure 12-2. Code Coverage Columns in the Structure (sim) Window

Instance

e Aggregation)

Skt graph

B F test_sm

|

L ..J FIMITIALELLS
|g Fvsin_capacity#

kest_smifast)

kest_smiFast)

— gl nop kest_smifast)
— il ctrl kest_smifast)
— gl wk_wd kest_smifast)
— gl wt_blk kest_smiFast)
— g rd_wd kest_smiFast)
— o il_op kest_smifast)
+F gl sm_seqo sm_seq(fast) 71.1%: 16 15 1 938 I
+ gl sram_0 beh_sramif. .. 66.2%) 5 1 83.3%
g RINITIALAES kest_smifast)
i RIMITIALAET kest_smifast)
—il HALWAYS#I0Z test_smifast)
—i AHALWAYS#I0S test_smifast)

Y ou can open and close coverage windows with the View > Cover age menu selection.

ModelSim SE Tutorial, v6.5b

133

Simulating With Code Coverage
Coverage Statistics in the GUI

Figure 12-3. View > Coverage Menu

Zall Stack,
W Capacity
Class Browser

Coverage

Dataflow

v Files (o)
FSM List fq)

v Library (U}
List
Laocals
Message Viewer
Mermory: Lisk (w0
Ohjects
Process
Prafiling
Project: ()
Schematic (1)

.

P

Yiew Compile Simulate Add

ld v Branch Coverage

v Condition Coverage
Current Exclisions

v Expression Coverage

v FSM Coverage
Instance Coverage

v Stakement Coverage

v Toggle Coverage

v Details

Assertions

’ Cowver Directives

Covergroups

Py T PR PERE b

All coverage windows can be re-sized, rearranged, and undocked to make the data more easily
viewable. To resize awindow, click-and-drag on any border. To move awindow, click-and-
drag on the header handle (three rows of dotsin the middle of the header) or click and drag the
tab. To undock awindow you can select it then drag it out of the Main window, or you can click
the Dock/Undock button in the header bar (top right). To redock the window, click the

Dock/Undock button again.

We will look at some of the coverage windows more closely in the next exercise. For complete
details on each window, Refer to the section Windows Containing Code Coverage Datain the

User'sManual.

Coverage Statistics in the GUI

Let’stake alook at the data in the coverage data displayed in different coverage windows.

1. View gtatisticsin the Structure (sim) window.

a. Select the sim tab and use the horizontal scroll bar to view coverage datain the
coverage columns. Coverage statistics are shown for each object in the design.

b. Select the Filestab to switch to the Files window and scroll to the right. Click the
right-mouse button on any column name and select the coverage data columns you
want to display from the popup list (Figure 12-4).

134

ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage
Coverage Statistics in the GUI

Figure 12-4. Right-click a Column Heading to Show Column List

v Eranch <& v Branch Count:

v Branch Graph v Branch Hits

v Condition %% v Condikion Count

v Condition Graph v Condikion Hits

v Expression %% w Expression Count

v Expression Graph v Expression Hiks

v FEC Condition % v FEC Condition Count
v FEC Condition Graph v FEC Condition Hits
v FEC Expression % v FEC Expression Counk
v FEC Expression Graph v FEC Expression Hits
v Full path v Specified path

v Skates %% v Skates Counk

v States Graph v Stabes Hits

v Skmk % » Skrnk Counk

v Stk Graph v Stk Hits

v Transitions % » Transitions Counk

v Transitions Graph v Transitions Hits

v Tvpe

All checked columns are displayed. Unchecked columns are hidden. The status of
every column, whether displayed or hidden, is persistent between invocations of

ModelSim.

2. View statisticsin the Missed Statements window.

a. Click the Statement tab to open the Missed Statements window (Figure 12-1).

Figure 12-5. Missed Statements Window

Missed Statements - by instance

v
I @ Skatement

Missed Statements =
=HwL] test_su.w
X 24 #
X 24 into = { . b:
—X 31 #]
—X 31 into = { . ¥
—}(3z [(posedyge clk)

Branch | $€ Condition Expression [{T Toaggle FamM Details é|?|

b.

Select different files from the Files window. The Missed Statements window
updates to show statistics for the selected file.

Double-click any entry in the Missed Statements window to display that linein a

Source window.

3. Undock the Coverage Details window.

ModelSim SE Tutorial, v6.5b 135

Simulating With Code Coverage
Coverage Statistics in the GUI

a. Click the Details tab to open the Coverage Details window.

If the Detailstab isn’t visible, select View > Coverage > Details from the Main

menu.

b. Click the Dock/Undock button in the upper right hand corner of the window. The
Coverage Details window will appear as a stand-alone window (Figure 12-6).

Figure 12-6. Coverage Details Window Undocked

Coverage Details

File Window

Coverage Details

=10l x|

Instance: /test_sm
Sigmal: dat
Hode count: 32

IH-=0L: &

O0L->=1H: 10

OL->Z: 337462

Z-=0L: 337491

IH->Z: 25144

Z->=1H: 25143

Togygle Cowverage: 15.75%
0f1 Coverage: :21.85%
Full Coverage: <47.92%

Z Coverage: o0.9d%

o

4. View toggle coverage statistics in the Coverage Details window.

a. Switch to the Missed Toggles window by selecting the Toggle tab.

If the Toggletab isn’t visible, select View > Coverage > Toggle Cover age from the

Main menu.

b. Select any object in the Toggle tab and view its coverage statistics in the Coverage

Details window.

5. View instance coverage statistics.

a. Click the Instance tab to switch to the Instance Coverage window.

If the Instance tab isn't visible, select View > Coverage > | nstance Cover age from

the Main menu.

The Instance Coverage window displays coverage statistics for each instancein a
flat, non-hierarchical view. Double-click any instance in the Instance Coverage
window to see its source code displayed in the Source window.

136

ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage
Coverage Statistics in the Source Window

Figure 12-7. Instance Coverage Window

Instance Coverage —0———————————————————————
Stk hiks

Instance De=sign unit | Skmkt count akmk misses

F jtest_sm kest_sm i 20, 2%

Bl [test_smfsm_seqa M _seq 16 15 1 onew]
Bl frest_smofsm_seqQfsm_0 sm 2z 19 3 g6.4% N |
ol frest_smnfsram_0 beh_sram) 5 1 83.53%]

*
is Statement iE Branch l @ Condition l E Expression IE Toggle lE F3r l@ Details I@ Instance rﬂ_?l

Coverage Statistics in the Source Window

The Source window contains coverage statistics of its own.

1. View coverage statistics for beh_sramin the Source window.

a. Double-click beh_sram.vin the Files window to open a source code view in the
Source window.

b. Scroll the Source window to view the code shown in Figure 12-8.

Figure 12-8. Coverage Statistics in the Source Window

[<:/Tutorialiexamples tutorialsfveriog/coverane/beh_sram.v - by File
Hits BiZ Ln# -
35
+ 39 always @ [(negedge clk)
X Va0 if (rd || wr) begin
50000 9372t 406Z8f 41 i) !rd_T]
.{ 4z dat_r <= #M DLY mem[addr]:
v 1/test sm/sram O/rd | WE_)
v sl T Thladdr] <= #M DLY dat:
45
46 end
]

d | r
Branch ic Condikion iE Expression iT Toagle iE FamM iﬁ Details iI Instance | |h] beh_stam.w - by Fileril?l

The Source window includes a Hits and a BC column to display statement Hits and
Branch Coverage, respectively. In Figure 12-8, the mouse cursor is hovering over
the source code in line 41. This causes the coverage icons to change to coverage
numbers. Table 12-1 describes the various coverage icons.

Table 12-1. Coverage Icons in the Source Window

Icon Description

green checkmark | indicates a statement that has been executed

ModelSim SE Tutorial, v6.5b 137

Simulating With Code Coverage
Toggle Statistics in the Objects Window

Table 12-1. Coverage Icons in the Source Window

I con Description

red X indicates that a statement in that line has not
been executed (zero hits)

green E indicates aline that has been excluded from
code coverage statistics

red X+ or Xg indicates that a true or false branch
(respectively) of aconditional statement has
not been executed

c. Select Tools> Code Coverage > Show cover age numbers.

The coverageiconsin the Hits and BC columns are replaced by execution counts on
every line. An elipsis(...) is displayed whenever there are multiple statements on
theline.

Figure 12-9. Coverage Numbers Shown by Hovering the Mouse Pointer

m 1 i Tutorialfexamples tutarialsverilog/cover age/beh_srarm. v - by File
Hiks BC Lmat -
35
S0o001 39 alwvays [[(negedge clk)
50001 50000t 1f 40 if {rd || wr) begin
50000 9372t 408Z8f 41 if ('rd)
9372 g2 dat_r <= #H_DLY merm [addr] ;
50000 9376t 40624f 43 if (‘'wr_)
9376 44 mem[addr] <= #M DLY dat;
45
46 encd
47 else
1 ot 1f 45 if ((rd || wr) == 0]
49 idisplavi(§stime,, "Error: Simultaneous R
50 ||
]

_%
Branch l @ Condikion lE Expression “T Toggle iE Fam iﬁ Details iI Instance | h] beh_sram.wv - by file]-1| ?'l

d. Select Tools > Code Coverage > Show cover age number s again to uncheck the
selection and return to icon display.

Toggle Statistics in the Objects Window

Toggle coverage counts each time alogic node transitions from one state to another. Earlier in
the lesson you enabled six-state toggle coverage by using the -cover x argument with the viog
or vcom command. Refer to the section Toggle Coverage in the User’s Manual for more
information.

138 ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage
Excluding Lines and Files from Coverage Statistics

1. View toggle datain the Objects window.
a. Select test_smin the Structure (sim) window.

b. If the Objects window isn’t open already, select View > Objects. Scroll to the right
to see the various toggle coverage columns, or undock and expand the window until
al columns are displayed (Figure 12-10).

Figure 12-10. Toggle Coverage in the Objects Window

File Edit “iew Add Tools Wwindow

Internal
(ol Array Inkernal
rd_ et Internal
Wr_ Sk Internal
into Q000 ! v Internal
auk_wire et Internal
oukof cked Array Internal
dat 00 3 Internal

F
F
F
F
F
F
F
F

addr 0ooa. .. MNet Internal
rsk 0 ber Inkernal

e = = = S =

clk 0 gister Internal

| |

sim;: fbest_sm

Excluding Lines and Files from Coverage
Statistics

Model Sim allows you to exclude lines and files from code coverage statistics. Y ou can set
exclusions with GUI menu selections, with atext file called an "exclusion filter file", or with
"pragmas’ in your source code. Pragmas are statements that instruct Model Sim to ignore
coverage statistics for the bracketed code. Refer to the section Excluding Objects from
Coverage in the User’s Manual for more details on exclusion filter files and pragmas.

1. Display the Current Exclusions window if necessary.
a. Select View > Coverage > Current Exclusions.
2. Excludealinein the Missed Statements window.

a. Right click alinein the Missed Statements window and select Exclude Selection.
(Y ou can also exclude the selection for the current instance only by selecting
Exclude Selection For Instance <inst_name>.) The line will appear in the Current
Exclusions window.

ModelSim SE Tutorial, v6.5b 139

Simulating With Code Coverage
Creating Code Coverage Reports

3. Exclude an entirefile.

a. Inthe Fileswindow, locate the sm.v file (or the sm.vhd file if you are using the
VHDL example).

b. Right-click the file name and select Code Coverage > Exclude Selected File
(Figure 12-11).

Figure 12-11. Excluding a File Using GUI Menus

—
............ Chjects ——
Specified path |Full path

wsin, wif
: loop

Yieww Source A Tuknrial fexarmnh rd

Code Coverage ¥ Code Coverage Reports, .. W _

. ; inta
roperties. . ouk_wit
oukof
at
Hhm o B ol ‘Mﬁ PP e gat

Thefile is added to the Current Exclusions window.
4. Cancd the exclusion of sm.v.

a. Right-click sm.v in the Current Exclusions window and select Cancel Selected
Exclusions.

Figure 12-12. Cancelling Selected Exclusions

Current Exclusions ——— 7
sm.w (entire filg]
best_sm.v Cancel Selected Exclusions

Lime: 31 File

Save Exclusion File

Load Exclusio

Show Pragma Exclusions

l()_t-: Exclusions iﬁ Details iI Instance lﬂ beh_sram.wv - by Filﬂ_il

Creating Code Coverage Reports

Y ou can create textual or HTML reports on coverage statistics using menu selectionsin the GUI
or by entering commands in the Transcript window. Y ou can also create textual reports of
coverage exclusions using menu selections.

To create textual coverage reports using GUI menu selections, do one of the following:

» Select Tools > Coverage Report > Text from the Main window menu bar.

140 ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage
Creating Code Coverage Reports

* Right-click any object in the sim or Files windows and select Code Coverage > Code
Coverage Reports from the popup context menu.

* Right-click any object in the Instance Coverage window and select Code cover age
reportsfrom the popup context menu. Y ou may also select I nstance Coverage > Code
cover age reports from the Main window menu bar when the Instance Coverage
window is active.

Thiswill open the Coverage Text Report dialog (Figure 12-13) where you can elect to report
on:

o alfiles,

o dl instances,

o all design units,

o gpecified design unit(s),
o gpecified instance(s), or
o specified sourcefile(s).

Model Sim creates a file (named report.txt by default) in the current directory and immediately
displays the report in the Notepad text viewer/editor included with the product.

ModelSim SE Tutorial, v6.5b 141

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-13. Coverage Text Report Dialog

Coverage Text Report il

~Report kind

Report an |.C'.II Files !I

Ol Mame | Browse, .,

File [Mame |sm. v Erowse, .,

Instance Name| Browse, ..
T Recursive I Depth I_

—Werbosity —_overage Type
" Default
toktals per instance /DU File V¥ Assertions
% Details v Covergroups
I all Toggles ¥ Cover directives
™ Condition/Expression Tables v Code coverage
[T Covergroup Options [T all code coverage
V¥ Source snnotation ¥ Branches
[T FEC Analysis ¥ Conditions
|- Metric Analysis v Expressions
™ Tokal Coverage ¥ Statements
¥ Fsms
—Cutpuk Mode
¥ Toggles
™ ®ML Format

~Report Pathname

|rep|:|rt.t:-ct Browse. ..

[aAppend to file

Advanced 0|:utiu:un5...| [8]4 | Caru:el|

To create acoverage report in HTML, select Tools > Coverage Report > HTML from the
Main window menu bar. This opens the Coverage HTML Report dialog where you can
designate an output directory path for the HTML report.

142 ModelSim SE Tutorial, v6.5b

Simulating With Code Coverage
Creating Code Coverage Reports

Figure 12-14. Coverage HTML Report Dialog

Coverage HTML Report El

Cther Opkions

—Colarization Threshold

High |20 [~ werbose [Mo Details
Lowe |50 [MoSource Code [Mo Frames

~HTML Qukput Direckory Path

|-:Dvhtmlrep|:|rt Browse., ..

V¥ “iew report in browser when complete

i Cancel

Restaore Defaulk

By default, the coverage report command will produce textua filesunlessthe -html argument is
used. You can display textual reports in the Notepad text viewer/editor included with the
product by using the notepad <filename> command.

To create a coverage exclusionsreport, select Tools> Coverage Report > Exclusionsfrom the
Main window menu bar. This opensthe Coverage Exclusions Report dialog where you can elect
to show only pragma exclusions, only user defined exclusions, or both.

Figure 12-15. Coverage Exclusions Report Dialog

Coverage Exclusion Report El

~Exclusion Type

¥ Pragma Exclusions ¥ User Defined Exclusions

~Report Pathname

|Exclusinn. dal Browse, ..

[T append ta file

Ik Cancel

Lesson Wrap-Up
This concludes this lesson. Before continuing we need to end the current simulation.

1. Typequit -sim at the VSIM> prompt.

ModelSim SE Tutorial, v6.5b 143

Simulating With Code Coverage
Creating Code Coverage Reports

144 ModelSim SE Tutorial, v6.5b

Chapter 13
Comparing Waveforms

Introduction

Waveform Compare computes timing differences between test signals and reference signals.
The general procedure for comparing waveforms has four main steps:

1. Select the simulations or datasets to compare
2. Specify the signals or regions to compare
3. Run the comparison
4. View the comparison results
In this exercise you will run and save a simulation, edit one of the sourcefiles, run the

simulation again, and finally compare the two runs.

Note
The functionality described in this tutorial requires a compare license feature in your

ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such afeature.

Design Files for this Lesson

The sample design for this lesson consists of afinite state machine which controls a behavioral
memory. The test bench test_sm provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of thisdesign. Thefilesare
located in the following directories:

Verilog — <install_dir>/examples/tutorials/verilog/compare
VHDL —<install_dir>/examples/tutorials/vhdl/compare

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the
VHDL version instead. When necessary, instructions distinguish between the Verilog and
VHDL versions of the design.

Related Reading
User's Manual sections: Waveform Compare and Recording Simulation Results With Datasets.

ModelSim SE Tutorial, v6.5b 145

Comparing Waveforms
Creating the Reference Dataset

Creating the Reference Dataset

The reference dataset is the .wif file that the test dataset will be compared against. It can be a
saved dataset, the current simulation dataset, or any part of the current simulation dataset.

In this exercise you will use aDO fileto create the reference dataset.

1. Create anew directory and copy thetutorial filesinto it.

Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory and copy all files from
<install_dir>/examples/tutorials/verilog/compare to the new directory.

If you have aVHDL license, copy thefilesin
<install_dir>/examples/tutorial s/vhdl/compare instead.

2. Start Model Sim and change to the exercise directory.

If you just finished the previous lesson, Model Sim should already be running. If not,
start ModelSim.

a Typevsim at aUNIX shell prompt or use the Model Sim icon in Windows.
If the Welcome to Model Sim dialog appears, click Close.
b. Select File> Change Directory and change to the directory you created in step 1.
3. Execute the following commands:

o Verilog

vlib work

viog *.v

vopt +acc test_sm-o0 opt_test _gold
vsim-wf gold.Wf opt_test _gold
add wave *

run 750 ns

quit -sim

o VHDL

vlib work

vcom -93 smvhd sm seq.vhd sm sram vhd test_sm vhd
vopt +acc test_sm-o0 opt_test _gold

vsim-wf gold.wWf opt _test gold

add wave *

run 750 ns

quit -sim

vcom -93 smvhd sm seq.vhd sm sram vhd test _sm vhd

146 ModelSim SE Tutorial, v6.5b

Comparing Waveforms
Creating the Test Dataset

Creating the Test Dataset

The test dataset is the .wif file that will be compared against the reference dataset. Like the
reference dataset, the test dataset can be a saved dataset, the current simulation dataset, or any
part of the current simulation dataset.

To simplify matters, you will create the test dataset from the simulation you just ran. However,
you will edit the test bench to create differences between the two runs.
Verilog
1. Edit the test bench.
a. Select File> Open and open test_sm.v.
b. Scroll to line 122, which looks like this:
@ (posedge cl k) wt_wd(' hl10, "' haa);
c. Changethe data pattern’aa’ to’'ab’:
@ (posedge cl k) wt_wd(' hl10, "' hab);
d. Select File> Saveto savethefile.
2. Compile therevised file and rerun the ssmulation.
viog test_smyv
vopt +acc test_sm-o opt_test_gold
vsimopt _test gold

add wave *
run 750 ns

VHDL
1. Edit the test bench.
a. Select File > Open and open test_sm.vhd.
b. Scroll to line 151, which looks like this:
w_wd (16#10#, 16#aa#, clk, into);
c. Change the data pattern’aa’ to’ab’:
wt_wd (16#10#, 16#ab#, clk, into);
d. Select File> Saveto savethefile.
2. Compile the revised file and rerun the simulation.

o VHDL

ModelSim SE Tutorial, v6.5b 147

Comparing Waveforms
Comparing the Simulation Runs

vcomtest_smyv

vopt +acc test_sm -

vsimopt _test gold
add wave *
run 750 ns

0 opt _test gold

Comparing the Simulation Runs

Model Sim includes a Comparison Wizard that walks you through the process. Y ou can also
configure the comparison manually with menu or command line commands.

1

Create a comparison using the Comparison Wizard.

a. Select Tools> Waveform Compare > Comparison Wizard.

b. Click the Browse button and select gold.wif as the reference dataset (Figure 13-1).
Recall that gold.wif is from the first smulation run.

Figure 13-1. First dialog of the Waveform Comparison Wizard

Comparison Wizard

The firgt gtep in creating a
Comparizon ig to open the reference
and test datazets [Lwif filez).

Either datazet can be a saved .wif file
or a dataset that iz already opened.

lze the Browse buttonz to browse far
a zaved datazet, or click the down
arrow ko gelect a file from the datazet
zelection hiztony.

=10l x|

—Reference D atazet

qold. wilf

;I Browse. .. |

— Test Dataset

= Lze Curent Simulation

¥ Update comparizon after each min

c. Leaving thetest dataset set to Use Current Simulation, click Next.

d. Select Compare All Signalsin the second dialog (Figure 13-2) and click Next.

Figure 13-2. Second dialog of the Waveform Comparison Wizard

Comparison Wizard

“wiith the reference and test datazets
zelected, the next step iz to zelect a
comparizon method,

Compare All Signals - compares all
zignals in the test dataset againzt the
zighalz in the reference datazet.

Compare Top Level Ports - compares
the top level ports of the zelected
datazets.

AL A e e e ST A S A FRA PR

=101 x|

— Comparizon kMethod

" Compare Top Level Ports
i~ Specify Comparizon by Signal

" Specify Comparizon by Fegion

148

ModelSim SE Tutorial, v6.5b

Comparing Waveforms
Viewing Comparison Data

e. Inthe next three dialogs, click Next, Compute Differences Now, and Finish,
respectively.

Model Sim performs the comparison and displays the compared signalsin the Wave
window.

Viewing Comparison Data

Comparison data is displayed in the Structure (compare), Transcript, Objects, Wave and List
windows. Compare objects are denoted by ayellow triangle.

The Compare window shows the region that was compared.

The Transcript window shows the number of differences found between the reference and test
datasets.

The Objects window shows comparison differences when you select the comparison object in
the Structure (compare) window (Figure 13-3).

Figure 13-3. Comparison information in the compare and Objects windows

COMpare Objects) :H A
Instance Design unit -

4 I I ¥

Files ’I sim |'a gald I@ COmpare ﬂﬂ

Comparison Data in the Wave Window

The Wave window displays comparison information as follows:

» timing differences are denoted by ared X’sin the pathnames column (Figure 13-4),

ModelSim SE Tutorial, v6.5b 149

Comparing Waveforms
Viewing Comparison Data

Figure 13-4. Comparison objects in the Wave window

m W ef FE
[

(=}

Mo Data-

sm.. |-Mo Data-

- .. | Mo Data-

. |-Mao Data-

Mo D ata-

Ma D ata-

& Mo Data-

Mo D ata-
i

I o FR0000 pz
Cursar 1 0 ps o
P AN Er Tl 1]]

1 M wWave l @ test =m.w I ﬂﬂ

* red areasin the waveform view show the location of the timing differences,
» redlinesin the scrollbars also show the location of timing differences,
* and, annotated differences are highlighted in blue.

The Wave window includes six compare icons that let you quickly jump between differences
(Figure 13-5).

Figure 13-5. The compare icons
14 e e o o8 o

From left to right, the icons do the following: find first difference, find previous annotated
difference, find previous difference, find next difference, find next annotated difference, find
last difference. Use these icons to move the selected cursor.

The compare icons cycle through differences on all signals. To view differencesin only a
selected signal, use <tab> and <shift> - <tab>.

Comparison Data in the List Window

Y ou can also view the results of your waveform comparison in the List window.

1. Add comparison datato the List window.

150 ModelSim SE Tutorial, v6.5b

Comparing Waveforms
Saving and Reloading Comparison Data

a. Sdect View > List from the Main window menu bar.

b. Dragthetest_smcomparison object from the compare tab of the Main window to the
List window.

c. Scroll down the window.

Differences are noted with yellow highlighting (Figure 13-6). Differences that have
been annotated have red highlighting.

Figure 13-6. Compare differences in the List window

N JRI=TEY

File Edit Wiew &dd Tools Window

|DsE& s B g% o

compare: ftest_sm/hout wire<: ‘I

PE— compare: ftest sm/houtof<routo £,
delta—,

420000 40| 000000O0O0O0OoO000000000000000000000
431000 +1 | 000000O0Q0QOo0000000000000000000000
435000 40| 0OOOO0O0OQOOO000000000000000000000
440000 40| 000000O0OQO0000000000000000000000
450000 40| 00OO00O0O0OOO000000000000000000000
451000 +1 | 000000O0Q0OQO0O000000000000000000000
451000 +2 | 00O000O0QOOO000000000000000000000
455000 40| 00OO00O0OOQOO000000000000010101010
460000 40| 000000O0O0O0OO000000000000010101010
.I:II:IIIIEIDDDDDDDDDDDDDDDDDDDDlDlDlI:IlI:I
470000 40| 000000000Oo0000000000000010101010
471000 +1 | 00O0000O0OOOO000000000000010101010
471000 +z | 00OO000O0QOOO000000000000010101010
475000 40| 00000000O0Oo0000000000000010101010
430000 40| 00OOO0O0OOOOO000000000000010101010
430000 40| 00000000000000000000000010101010 (K
431000 41| 0000000Q0OOO000000000000010101010 (i

oooooooooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooo00000000n
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
DDDDDDDDDDDDDDDDDDDDD-J
Qoooooaooooooo0ooooonn
(i lniufalaiuinininiuniuiuininiafujuinyuyn]
ooooooaooooooo0ooooonn
ooooooaooooo00000000n
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooooo0ooooonn
ooooooaooooo000o0ao0n
DDDDDDDDDDDDDDDDDDDDDd

163 lines | | 2

' = =
' (=R S S S = R ST ST

I S e B S N
HF R ORRRR

Saving and Reloading Comparison Data

Y ou can save comparison data for later viewing, either in atext file or in files that can be
reloaded into Model Sim.

To save comparison data so it can be reloaded into Model Sim, you must save two files. First,
you save the computed differences to one file; next, you save the comparison configuration
rules to a separate file. When you reload the data, you must have the reference dataset open.

1. Savethe comparison datato atext file.

a. Inthe Main window, select Tools> Waveform Compare > Differences> Write
Report.

ModelSim SE Tutorial, v6.5b 151

Comparing Waveforms
Saving and Reloading Comparison Data

b. Click Save.
This saves compare.txt to the current directory.

c. Typenotepad compare.txt at the VSIM> prompt to display the report
(Figure 13-7).

Figure 13-7. Coverage data saved to a text file

Notepad P [
Fil= Edit ‘Window
£ compare. tet =8
Total signals compared = 11

Total primary differences = 6
Total secondary differences = 6

HNumber of primary sSighals with differences = 4

Diff nuwber 1, From time 135 ns delta 0 Lo Cime 155 ns delta 0.
gold:/test_sm/into = 00000000000000000000000010101010
Sim:/test_amdinto = 00000000000000000000000010101011

Diff nuwber 2, From time 135 ns delta 0 Lo Cime 155 ns delta 0.
gold:/test_am/into[0] = 0O

Sim:/test_sam/into[0] = 1

Diff nwber 3, From time 171 ns delta 1 Lo tLime 191 ns delta 1.
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuwber 4, From time 171 ns delta 1 Lo Lime 191 ns delta 1.
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuwber 5, From time 409 ns delta 1 Lo Cinme 411 ns delta 2.
gold:/test_smf/dat = 00000000000000000000000010101010
Sim:/test_amd/dat = 00000000000000000000000010101011

Diff nuwber 6, From time 409 ns delta 1 Lo Cime 411 ns delta 2.
gold:/test_smidat[0] = StO

sim:/test_smi/dat[0] = 3tl

Diff nuwber 7, From time 431 ns delta 1 Lo Cinme 491 ns delta 1.

1Al S e B T Yot S e e e B e B

d. Close Notepad when you have finished viewing the report.
2. Savethe comparison datain files that can be reloaded into Model Sim.
a. Select Tools > Waveform Compar e > Differences > Save.
b. Click Save.
This saves compare.dif to the current directory.
c. Select Tools> Waveform Compare > Rules> Save.
d. Click Save.

This saves compare.rul to the current directory.

152 ModelSim SE Tutorial, v6.5b

Comparing Waveforms
Saving and Reloading Comparison Data

e. Select Tools> Waveform Compare> End Comparison.
3. Reload the comparison data.
a. With the Structure (sim) window active, select File > Open.
b. Change the Files of Typeto Log Files (*.wlf) (Figure 13-8).
Figure 13-8. Displaying Log Files in the Open dialog

File narme; I j Open I
- Cancel |

%

Files of type: Laog Files [* valf]

c. Double-click gold.wlf to open the dataset.
d. Select Tools> Waveform Compare > Reload.

Since you saved the data using default file names, the dialog should already have the
correct Waveform Rules and Waveform Difference files specified (Figure 13-9).

Figure 13-9. Reloading saved comparison data
Reload and Redizplay Compare Differences M=l E3

—waveform Fules file name

Icumpare.rul Browse...

—waveform Difference file name

cormpare. dif Browse...

ok, Cancel

e. Click OK.

The comparison reloads. Y ou can drag the comparison object to the Wave or List
window to view the differences again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close
the gold.wif dataset.

1. Typequit -sim at the VSIM> prompt.
2. Typedataset close gold at the Model Sim> prompt.

ModelSim SE Tutorial, v6.5b 153

Comparing Waveforms
Saving and Reloading Comparison Data

154 ModelSim SE Tutorial, v6.5b

Chapter 14
Automating Simulation

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using
Model Sim in interactive mode: executing single commands, one after another, viathe GUI
menus or Main window command line. In situations where you have repetitive tasks to
complete, you can increase your productivity with DO files.

DO files are scripts that allow you to execute many commands at once. The scripts can be as
simple as a series of Model Sim commands with associated arguments, or they can be full-blown
Tcl programs with variables, conditional execution, and so forth. Y ou can execute DO files
from within the GUI or you can run them from the system command prompt without ever
invoking the GUI.

Note
D This lesson assumes that you have added the <install_dir>/modeltech/< platform>

directory to your PATH. If you did not, you will need to specify full paths to the tools
(i.e., vlib, vmap, vlog, vcom, and vsim) that are used in the lesson.

Related Reading
User’s Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File

Creating DO filesis as smple as typing the commands in atext file. Alternatively, you can save
the Main window transcript asa DO file. In this exercise, you will use the commands you enter
in the Main window transcript to create a DO file that adds signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

1. Loadthetest_counter design unit.
a. If necessary, start ModelSim.
b. Change to the directory you created in the "Basic Simulation” lesson.

c. Enter vam testcounter_opt to load the optimized design unit.

ModelSim SE Tutorial, v6.5b 155

Automating Simulation
Running in Command-Line Mode

2.

Enter commands to add signals to the Wave window, force signals, and run the
simulation.

a
b.

Select File > New > Sour ce > Do to create anew DO file.
Enter the following commands into the source window:

add wave count
add wave cl k
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100

force reset 0O
run 300

force reset 1
run 400

force reset 0O
run 200

Savethefile.

a
b.

Select File> Save As.

Type sim.do in the File name: field and save it to the current directory.

L oad the ssmulation again and use the DO file.

a
b.

C

Enter quit -sim at the VSIM> prompt.
Enter vsim testcounter _opt at the Model Sim> prompt.
Enter do sim.do at the VSIM> prompt.

M odel Sim executes the saved commands and draws the waves in the Wave window.

When you are done with this exercise, select File > Quit to quit ModelSim.

Running in Command-Line Mode

We use the term "command-line mode" to refer to ssmulations that are run from aDOS/ UNIX
prompt without invoking the GUI. Several Model Sim commands (e.g., vsim, vlib, vlog, etc.)
are actually stand-alone executables that can be invoked at the system command prompt.
Additionally, you can create aDO file that contains other Model Sim commands and specify that
file when you invoke the simulator.

1. Create anew directory and copy the tutorial filesinto it.

Start by creating a new directory for this exercise. Create the directory and copy the
following filesinto it:

/<install _dir>/examples/tutorial s/verilog/automation/counter.v

/<install_dir>/examples/tutorial s/verilog/automation/stim.do

156

ModelSim SE Tutorial, v6.5b

Automating Simulation
Running in Command-Line Mode

This lesson uses the Verilog file counter.v. If you have aVHDL license, use the
counter.vhd and stim.do filesin the /<install_dir>/examples/tutorial s'vhdl/automation
directory instead.

2. Create anew design library and compile the sourcefile.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created
instep 1.

a. Typevlib work at the DOS UNIX prompt.

b. For Verilog, typevlog counter.v at the DOS UNIX prompt. For VHDL, type vcom
counter.vhd.

3. CreateaDOfile.
a. Open atext editor.
b. Typethefollowing linesinto anew file:

list all signals in decinmal fornat
add list -decinal *

read in stinmulus
do stimdo

output results
wite |list counter.| st

quit the simulation
quit -f

c. Savethefilewith the name sim.do and place it in the current directory.
4. Optimize the counter design unit.
a. Enter the following command at the DOS/UNIX prompt:
vopt +acc counter -o counter_opt
5. Run the batch-mode simulation.
a. Enter the following command at the DOS/UNIX prompt:

vsim -c -do sim.do counter_opt -wIf counter_opt.wlf

The -c argument instructs Model Sim not to invoke the GUI. The -wlIf argument
saves the simulation resultsin aWLF file. This allows you to view the smulation
results in the GUI for debugging purposes.

6. View thelist output.

a. Open counter.lst and view the simulation results. Output produced by the Verilog
version of the design should look like the following:

ModelSim SE Tutorial, v6.5b 157

Automating Simulation
Using Tcl with the Simulator

ns / count er/ count

delta /counter/clk
/ count er/reset
0 +0 X z *
1 +0 0z *
50 +0 0 * *
100 +0 00~
100 +1 000
150 +0 0*O0
151 +0 1*0
200 +0 100
1*0

250 +0

The oﬁtput may appear dlightly different if you used the VHDL version.
7. View theresultsin the GUI.

Since you saved the simulation results in counter.wif, you can view them in the GUI by
invoking VSIM with the -view argument.

Note
D Make sure your PATH environment variable is set with the current version of ModelSim
at the front of the string.

a. Typevsim -view counter_opt.wlf at the DOS/ UNIX prompt.
The GUI opens and a dataset tab named "counter” is displayed (Figure 14-1).

Figure 14-1. A Dataset in the Main Window Workspace

T — Ohjects Py : H A =
Marne Yalue
4 count 01100100
4k Sk

Instance

Design unit |Design unit kvpe | Misibiliky

F counker counter Module +acc=-<none =

4 reset SO

1 |
]il Libirary @ n:n:nunter] ﬂ_?'l « | | ,

b. Right-click the counter instance and select Add > To Wave > All itemsin region.

The waveforms display in the Wave window.

8. When you finish viewing the results, select File > Quit to close Model Sim.

Using Tcl with the Simulator

The DO files used in previous exercises contained only Model Sim commands. However, DO
filesarereally just Tcl scripts. This means you can include awhole variety of Tcl constructs

158 ModelSim SE Tutorial, v6.5b

Automating Simulation
Using Tcl with the Simulator

such as procedures, conditional operators, math and trig functions, regular expressions, and so
forth.

In this exercise, you create asimple Tcl script that tests for certain values on asignal and then
adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to
save a particular zoom range and scroll position in the Wave window. The Tcl script also
creates buttons in the Main window called bookmarks.

1. Create the script.
a. Inatext editor, open anew file and enter the following lines:

proc add_wave_zoom {stine nun} ({

echo "Bookmarki ng wave $nunt

bookmark add wave "bk$numt' "[expr $stime - 50] [expr $stinme +
100]1" O

add button "$nuni [list bookmark goto wave bk$nuni

}
These commands do the following:

» Create anew procedure called "add_wave zoom" that has two arguments, stime
and num.

» Create abookmark with azoom range from the current simulation time minus 50
time units to the current simulation time plus 100 time units.

* Add abutton to the Main window that calls the bookmark.
b. Now add these lines to the bottom of the script:
add wave -r /*

when {cl k' event and cl k="1"} {
echo "Count is [exa count]”

i f {[exam ne count]== "00100111"} {
add_wave_zoom $now 1
} elseif {[exanmine count]== "01000111"} {

add _wave zoom $now 2
}
ll'hese commands do the following:
* Add all signalsto the Wave window.
» Useawhen statement to identify when clk transitions to 1.

 Examinethe value of count at those transitions and add a bookmark if itisa
certain value.

c. Savethe script with the name "add_bkmrk.do" into the directory you created in the
Basic Simulation lesson.

2. Loadthetest_counter design unit.
a Start ModelSim.

ModelSim SE Tutorial, v6.5b 159

Automating Simulation
Using Tcl with the Simulator

b. Select File> Change Directory and change to the directory you saved the DO file
toin step 1c above.

c. Enter the following command at the QuestaSim> prompt:

vsim testcounter_opt

3. Executethe DO file and run the design.
a. Typedoadd _bkmrk.do at the VSIM> prompt.
b. Typerun 1500 nsat the VSIM> prompt.
The simulation runs and the DO file creates two bookmarks.

It also creates buttons (labeled "1" and "2") on the Main window toolbar that jump to
the bookmarks (Figure 14-2).

Figure 14-2. Buttons Added to the Main Window Toolbar

File Edit Wiew Compile Simulate Add Transcript Tools 'y Lawout Window Help

|Ds@ & x k@02 AL J T J & v) [J

J Lavout [3imilate | J e e e J E E B

sirn EEE ' H A x| M wave - default
¥|Instance |Design unit |l
|g #vsim_capacity#
B test_counter best_counter(Fast)

o #INITIAL#17 test_counterifast)
o AINITIAL#Z3 test_counterifast)

-

[test_counterfcount 01001011

T Y frest_counterdutficount 01001011

- «.\hh‘h_‘_,d__#-‘-‘ -""“-“HJ-\ It R R T -

c. Click the buttons and watch the Wave window zoom in and scroll to the time when
count is the value specified in the DO file.

d. If the Wavewindow isdocked in the Main window make it the active window (click
anywhere in the Wave window), then select Wave > Bookmarks > bk1. If the
window is undocked, select View > Bookmar ks> bk1 in the Wave window.

Watch the Wave window zoom in and scroll to the time when count is 00100111.
Try the bk2 bookmark as well.

Lesson Wrap-Up

This concludes this lesson.

1. Select File> Quit to close Model Sim.

160 ModelSim SE Tutorial, v6.5b

Automating Simulation
Using Tcl with the Simulator

ModelSim SE Tutorial, v6.5b 161

ABCDEFGHI JKLMNOPQRSTUVWXY Z

Index

— A — drivers, expanding to, 92
aCC, 56

add dataflow command, 102 —E—

add wave command, 73 Enable coverage, 132

al, 105 externa libraries, linking to, 50
— B — —F—
: folders, in projects, 41
break icon, 30 , .
breakpoints format, saving for Wave window, 77
in SystemC modules, 64 — G —
setting, 30 gee, 56
stepping, 32
C A,
— v hierarchy, displaying in Dataflow window, 101
C Debug, 64
Code Coverage — L_—
enabling, 132 Ilbrar|e§ .
excluding lines and files, 139 design library types, 19
reports, 140 linking to external libraries, 50
Source window, 137 mapping tlo pefmanently, 52
command-line mode, 156 resource libraries, 19
Compile, 25 working libraries, 19
compile order, changing, 38 working, creating, 23
compiling your design, 18 linking to external libraries, 50
Coverage M —
enabling, 132
manuals, 13
coverage report command, 143 manbing libraries permanently. 52
cursors, Wave window, 74, 87 apping P Y
memories
— D — changing values, 118
Dataflow window initializing, 114
displaying hierarchy, 101 memory contents, saving to afile, 112
expanding to drivers/readers, 92 N
options, 101 - ad_ q
tracing events, 94 notepad command, 152
tracing unknowns, 98 — 00—
dataset close command, 153 optimization, 17
design library options, simulation, 44
working type, 19
design optimization, 17 —P—
documentation, 13 Performance Analyzer

ModelSim SE Tutorial, v6.5b 161

ABCDEFGHI JKLMNOPQRSTUVWXY Z

filtering data, 127
physical connectivity, 92
Profiler
profile details, 126
viewing profile details, 126
projects
adding itemsto, 36
creating, 35
flow overview, 19
organizing with folders, 41
simulation configurations, 44

—Q—
quit command, 50, 51

— R —

reference dataset, Waveform Compare, 146
reference signals, 145

run -al, 29

run command, 29

—S—
saving simulation options, 44
simulation
basic flow overview, 17
restarting, 31
running, 28
simulation configurations, 44
Standard Developer’ s Kit User Manual, 14
stepping after a breakpoint, 32
SystemC
setting up the environment, 56
supported platforms, 56
viewing in the GUI, 63

— T —
Tcl, using in the simulator, 158

test dataset, Waveform Compare, 147
test signals, 145

time, measuring in Wave window, 74, 87
toggle statistics, Signals window, 138
tracing events, 94

tracing unknowns, 98

—U—
unknowns, tracing, 98

—V —
vcom command, 106
vlib command, 106
vlog command, 106
vsim command, 24

— W —
Wave window
adding itemsto, 72, 80
cursors, 74, 87
measuring time with cursors, 74, 87
saving format, 77
zooming, 73, 82
Waveform Compare
reference signals, 145
saving and reloading, 151
test signals, 145
working library, creating, 18, 23

— X —
X values, tracing, 98

7
zooming, Wave window, 73, 82

162

ModelSim SE Tutorial, v6.5b

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/terms_conditions/enduser

IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis alegal agreement concerning the use of Softwar e (as defined in Section 2) between the company acquiring
the license (“ Customer™), and the Mentor Graphics entity that issued the corresponding quotation or, if no
guotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics’). Except for license
agreementsrelated to the subject matter of thislicense agreement which are physically signed by Customer and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties
entire under standing relating to the subject matter and supersede all prior or contemporaneous agreements. | f
Customer does not agree to these terms and conditions, promptly return or, if received electronically, certify
destruction of Software and all accompanying items within five days after receipt of Software and receive a full
refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

1.1. Totheextent Customer (or if and as agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will invoice separately. Unless provided
with a certificate of exemption, Mentor Graphics will invoice Customer for all applicable taxes. Customer will make al
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments
by Customer hereunder will be Customer’s sole responsibility. Notwithstanding anything to the contrary, if Customer
appoints a third party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for
payment under such ordersin the event of default by the third party.

1.3. All products are delivered FCA factory (Incoterms 2000) except Software delivered electronically, which shall be deemed
delivered when made available to Customer for download. Mentor Graphics retains a security interest in all products
delivered under this Agreement, to secure payment of the purchase price of such products, and Customer agreesto sign any
documents that Mentor Graphics determines to be necessary or convenient for use in filing or perfecting such security
interest. Mentor Graphics' delivery of Software by electronic means is subject to Customer’s provision of both a primary
and an aternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“ Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form; (b) for
Customer’sinternal business purposes; (c) for the term; and (d) on the computer hardware and at the site authorized by Mentor
Graphics. A siteis restricted to a one-half mile (800 meter) radius. Customer may have Software temporarily used by an
employee for telecommuting purposes from locations other than a Customer office, such as the employee's residence, an airport
or hotel, provided that such employee's primary place of employment is the site where the Software is authorized for use.
Mentor Graphics' standard policies and programs, which vary depending on Software, license fees paid or services purchased,
apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to execution of a
single session by a single user on the authorized hardware or for arestricted period of time (such limitations may be technically
implemented through the use of authorization codes or similar devices); and (c) support services provided, including eligibility
to receive tel ephone support, updates, modifications, and revisions. For the avoidance of doubt, if Customer requests any change
or enhancement to Software, whether in the course of receiving support or consulting services, evaluating Software or

http://www.mentor.com/terms_conditions/enduser

otherwise, any inventions, product improvements, modifications or developments made by Mentor Graphics (at Mentor
Graphics' sole discretion) will be the exclusive property of Mentor Graphics.

ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for alimited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’'s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agreesthat any written evaluations and all inventions, product improvements, modifications or devel opments that
Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title
and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this Agreement.

RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Software available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Log files, data files, rule files and script files generated by or for the Software (collectively “Files”)
constitute and/or include confidential information of Mentor Graphics. Customer may share Files with third parties
excluding Mentor Graphics competitors provided that the confidentiality of such Filesis protected by written agreement at
least as well as Customer protects other information of a similar nature or importance, but in any case with at least
reasonable care. Standard Verification Rule Format (“SVRF") and Tcl Verification Format (“TVF") mean Mentor
Graphics' proprietary syntaxes for expressing process rules. Customer may use Files containing SVRF or TVF only with
Mentor Graphics products. Under no circumstances shall Customer use Software or allow its use for the purpose of
developing, enhancing or marketing any product that isin any way competitive with Software, or disclose to any third party
the results of, or information pertaining to, any benchmark. Except as otherwise permitted for purposes of interoperability
as specified by applicable and mandatory local law, Customer shall not reverse-assemble, reverse-compile, reverse-
engineer or in any way derive from Software any source code.

5.2. Customer may not sublicense, assign or otherwise transfer Software, this Agreement or the rights under it, whether by
operation of law or otherwise (“attempted transfer”), without Mentor Graphics' prior written consent and payment of
Mentor Graphics' then-current applicable transfer charges. Any attempted transfer without Mentor Graphics' prior written
consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in the immediate
termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement, including without
limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in interest and
assigns.

5.3. The provisions of this Section 5 shall survive the termination of this Agreement.

SUPPORT SERVICES. To the extent Customer purchases support services for Software, Mentor Graphics will provide
Customer with available updates and technical support for the Software which are made generally available by Mentor Graphics
as part of such services in accordance with Mentor Graphics' then current End-User Software Support Terms located at
http://supportnet.mentor.com/about/legal /.

http://supportnet.mentor.com/about/legal/

7.

10.

11.

LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Software, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Software will meet Customer’s requirements or that operation of Software will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under the applicable Order and
does not renew or reset, by way of example, with the delivery of (a) Software updates or (b) authorization codes or aternate
Software under a transaction involving Software re-mix. This warranty shall not be valid if Software has been subject to
misuse, unauthorized modification or improper installation. MENTOR GRAPHICS' ENTIRE LIABILITY AND
CUSTOMER'S EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF
THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH ISLICENSED AT NO COST; OR (C)
BETA CODE; ALL OF WHICH ARE PROVIDED “ASIS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITSLICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS
LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY .

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IFMENTOR GRAPHICSOR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS OR ITSLICENSORS LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT PAID BY CUSTOMER FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE
CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY
FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE
TERMINATION OF THISAGREEMENT.

LIFE ENDANGERING APPLICATIONS. NEITHER MENTOR GRAPHICSNOR ITSLICENSORS SHALL BE LIABLE
FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN ANY
APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN DEATH OR
PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH CUSTOMER’S USE OF SOFTWARE AS
DESCRIBED IN SECTION 9. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF
THISAGREEMENT.

INFRINGEMENT.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Software
product infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics will pay any
costs and damages finally awarded against Customer that are attributable to the action. Customer understands and agrees
that as conditions to Mentor Graphics' obligations under this section Customer must: (a) notify Mentor Graphics promptly
in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

11.2. If aclaimis made under Subsection 11.1 Mentor Graphics may, at its option and expense, (a) replace or modify Software so
that it becomes noninfringing, or (b) procure for Customer the right to continue using Software, or (c) require the return of
Software and refund to Customer any license fee paid, less areasonable alowance for use.

11.3. Mentor Graphics has no liability to Customer if the claim is based upon: (a) the combination of Software with any product
not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the use of other than
acurrent unaltered release of Software; (d) the use of Software as part of an infringing process; (€) a product that Customer
makes, uses, or sells; (f) any Beta Code; (g) any Software provided by Mentor Graphics' licensors who do not provide such
indemnification to Mentor Graphics' customers; or (h) infringement by Customer that is deemed willful. In the case of (h),
Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs related to the action.

11.4. THIS SECTION IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION BY
ANY SOFTWARE LICENSED UNDER THISAGREEMENT.

12.

13.

14.

15.

16.

17.

18.

19.

TERM.

12.1. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate upon notice
if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 2, 3, or 5. For any
other materia breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days written notice if
you are in material breach and fail to cure such breach within the 30 day notice period. If a Software license was provided
for limited term use, such license will automatically terminate at the end of the authorized term.

12.2. Mentor Graphics may terminate this Agreement immediately upon notice in the event Customer is insolvent or subject to a
petition for (a) the appointment of an administrator, receiver or similar appointee; or (b) winding up, dissolution or
bankruptcy.

12.3. Upon termination of this Agreement or any Software license under this Agreement, Customer shall ensure that all use of the
affected Software ceases, and shall return it to Mentor Graphics or certify its deletion and destruction, including all copies,
to Mentor Graphics' reasonable satisfaction.

12.4. Termination of this Agreement or any Software license granted hereunder will not affect Customer’s obligation to pay for
products shipped or licenses granted prior to the termination, which amounts shall immediately be payable at the date of
termination.

EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export or
diversion of certain products, information about the products, and direct products of the products to certain countries and certain
persons. Customer agrees that it will not export Software or a direct product of Software in any manner without first obtaining
all necessary approval from appropriate local and United States government agencies.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or aU.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’ s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’ s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXIm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics'
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-complianceisrevealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this section shall
survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOL UTION. The owners of the Mentor Graphics intellectual
property rights licensed under this Agreement are located in Ireland and the United States. To promote consistency around the
world, disputes shall be resolved as follows. This Agreement shall be governed by and construed under the laws of the State of
Oregon, USA, if Customer islocated in North or South America, and the laws of Ireland if Customer islocated outside of North
or South America. All disputes arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of
Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the laws of Ireland apply. Notwithstanding the
foregoing, all disputesin Asia (except for Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in
Singapore before asingle arbitrator to be appointed by the Chairman of the Singapore International Arbitration Centre (“SIAC”)
to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the
dispute, which rules are deemed to be incorporated by reference in this section. This section shall not restrict Mentor Graphics
right to bring an action against Customer in the jurisdiction where Customer’s place of businessis located. The United Nations
Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

MISCELLANEOUS. This Agreement containsthe parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. All notices required or authorized under this Agreement must be in writing and shall be sent to the
person who signs this Agreement, at the address specified below. Waiver of terms or excuse of breach must be in writing and
shall not constitute subsegquent consent, waiver or excuse.

Rev. 090402, Part No. 239301

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Assumptions
	Where to Find Our Documentation
	Download a Free PDF Reader With Search

	Mentor Graphics Support
	Additional Support

	Before you Begin
	Example Designs

	Chapter 2 Conceptual Overview
	Design Optimizations
	Basic Simulation Flow
	Project Flow
	Multiple Library Flow
	Debugging Tools

	Chapter 3 Basic Simulation
	Create the Working Design Library
	Compile the Design Units
	Optimize the Design
	Load the Design
	Run the Simulation
	Set Breakpoints and Step through the Source

	Chapter 4 Projects
	Create a New Project
	Add Objects to the Project
	Changing Compile Order (VHDL)
	Compile the Design
	Optimize for Design Visibility
	Load the Design

	Organizing Projects with Folders
	Add Folders
	Moving Files to Folders

	Simulation Configurations

	Chapter 5 Working With Multiple Libraries
	Creating the Resource Library
	Creating the Project
	Linking to the Resource Library
	Verilog
	VHDL
	Linking to a Resource Library

	Permanently Mapping VHDL Resource Libraries

	Chapter 6 Simulating SystemC Designs
	Setting up the Environment
	Preparing an OSCI SystemC design
	Compiling a SystemC-only Design
	Mixed SystemC and HDL Example
	Viewing SystemC Objects in the GUI
	Setting Breakpoints and Stepping in the Source Window
	Examining SystemC Objects and Variables
	Removing a Breakpoint

	Chapter 7 Analyzing Waveforms
	Loading a Design
	Add Objects to the Wave Window
	Zooming the Waveform Display
	Using Cursors in the Wave Window
	Working with a Single Cursor
	Working with Multiple Cursors

	Saving and Reusing the Window Format

	Chapter 8 Creating Stimulus With Waveform Editor
	Load a Design Unit
	Create Graphical Stimulus with a Wizard
	Edit Waveforms in the Wave Window
	Save and Reuse the Wave Commands
	Exporting the Created Waveforms
	Simulating with the Test Bench File
	Importing an EVCD File

	Chapter 9 Debugging With The Dataflow Window
	Exploring Connectivity
	Tracing Events
	Tracing an X (Unknown)
	Displaying Hierarchy in the Dataflow Window

	Chapter 10 Viewing And Initializing Memories
	View a Memory and its Contents
	Navigate Within the Memory

	Export Memory Data to a File
	Initialize a Memory
	Interactive Debugging Commands

	Chapter 11 Analyzing Performance With The Profiler
	View Profile Details
	Filtering and Saving the Data

	Chapter 12 Simulating With Code Coverage
	Coverage Statistics in the GUI
	Coverage Statistics in the Source Window
	Toggle Statistics in the Objects Window
	Excluding Lines and Files from Coverage Statistics
	Creating Code Coverage Reports

	Chapter 13 Comparing Waveforms
	Creating the Reference Dataset
	Creating the Test Dataset
	Comparing the Simulation Runs
	Viewing Comparison Data
	Comparison Data in the Wave Window
	Comparison Data in the List Window

	Saving and Reloading Comparison Data

	Chapter 14 Automating Simulation
	Creating a Simple DO File
	Running in Command-Line Mode
	Using Tcl with the Simulator

	Index
	End-User License Agreement
	Documentation Feedback

