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Abstract 

In this paper we present the design of a SoC baseline platform 
with a Leon2 CPU. An Advanced Encryption Standard (AES) 
module and a reconfigurable core form the IP blocks that are 
attached to the SoC through AMBA bus. The reconfigurable 
core is inserted into the design using tools developed by 
DAFCA, Inc. (Design Automation for Flexible Chip 
Architectures) for post-silicon debugging and verification. 
Hence, a re-spin may be avoided and the time-to-market will 
be reduced.  

I. Introduction: 
SoC is a major revolution in IC design where the whole 
functionality of a system is placed on a single chip. Its 
advantages include high performance, shorter design cycle 
time and space efficiency, whereas the challenges include 
deep sub micron design complexities, verification and 
integration. Presently, SoC’s can have as many as several 
tens of million gates, multiple IP cores, and complex on-
chip buses and protocols. The integration of all the 
components into a system and the verification of such a big 
design have become a very challenging job.  

Most of today’s virtual components (i.e. IP cores) don’t 
have well-defined contents and interfaces; they are often 
fuzzy and more like “patches in a quilt, which have to be 
carefully stitched together” [1], hence, integrating existing 
IP blocks to form a larger system is not a simple task. 
Moreover, with the rapid shrinking of the feature size, more 
physical errors are bound to occur due to timing, crosstalk, 
noise, temperature, and process variation. At the same time, 
the designers are losing visibility into the design as the size 
of the design increases [2]. The internal pins are buried 
inside the chip and this makes it even harder to find errors in 
the design after the chip is fabricated. The whole debugging 
process requires multiple re-spins and delays the product’s 
time-to-market by several months.  

In this paper we present the design of a platform-based SoC 
with added reconfigurable logic blocks as IP blocks and in-
silicon debugging logic to enhance the reliability and the 

flexibility of the design. With the help of the debugging 
logic IP blocks, the designer can regain the visibility and the 
controllability of the complex SoC design. Thus, the number 
of re-spins and the product’s time-to-market will be 
reduced. 

II. Background 
Platform-based design is becoming the method of choice for 
designing SoCs for embedded systems [3]. It has extensive 
planned design reuse, which enables designers to create a 
succession of derivative designs. In this approach, the main 
focus areas for the designer are interface standardization, 
virtual system design, and designing the system architecture 
and interface between the blocks. The basic idea behind this 
is to re-use significant portions of previous designs to 
reduce the time-to-market, which generally results in greater 
revenue for the product. Under this concept, the first goal is 
to develop a complete SoC that is central to its product line. 
Usually there is a processor, a real-time operating system, 
peripheral IP blocks, some memory and a bus structure. 
Once the baseline platform is fully functional, a derivative 
design in which only a few virtual components are added or 
dropped can be accomplished easily [4]. 

In this paper, we will discuss the verification and debugging 
of an SoC using reconfigurable logic blocks. Adding 
reconfigurable logic to the SoC also provides flexibility for 
changing functional parameters or protocols after 
fabrication. Thus, functions not envisioned in the original 
design can be implemented. The merits of adding 
reconfigurability to an ASIC chip are evident: traditional 
ASICs achieve their performance advantages with direct 
hardware implementation, however this advantage is 
sometime overshadowed by the fact that the silicon design is 
most often fixed. Traditional ASIC design is rapidly 
changing as increasing ASIC/SoC development costs are 
forcing designers to make silicon more flexible.[5] 
Designers have long used FPGAs to implement software 
algorithms in hardware to increase performance, as we can 
see so many systems have some kind of FPGA or 
programmable devices at the board-level of the design.  
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Although the concept of adding reconfigurable logic into 
traditional ASIC/SoC has been around for a while, 
reconfigurable systems have had only a minor impact to 
date. One of the reasons is that it needs software support and 
clear investment return to make it attractive. In our design 
we have explored a new trend in the SoC debugging and 
verification: using reconfigurable logic for in-silicon 
debugging and design verification. In our design, 
reconfigurable logic was inserted into the baseline design 
using tools recently developed by DAFCA, Inc. (Design 
Automation for Flexible Chip Architectures) for post-silicon 
debugging and verification. This logic enables the SoC to be 
verified after fabrication, and in some cases, errors can be 
fixed using the reconfigurable structures. Hence, a re-spin 
may be avoided and the time-to-market will be reduced. 

III. Technical Approach 
Our baseline platform design consists of a Leon2 
processor[6] as the CPU, AMBA on-chip bus, an Advanced 
Encryption Standard (AES) module and a Reconfigurable 
module attached to the bus Leon2 as user IP blocks. The 
block diagram of our design is shown in Figure 1. 

Since the main key components (e.g. CPU, Bus, AES) are 
open source and can be obtained at no charge and databases 
of commercial and non-commercial IP blocks are now on-
line,[7][8] SoC developers can identify reusable virtual 
components to be integrated into their platforms. Although 
business and legal issues must be pursued individually for 
each component, the development of a derivative SoC 
design is certainly facilitated 

 

Figure 1. SoC Platform Block Diagram 

A. SoC Design Components 
1) Leon2 CPU 

The Leon2 CPU is a 32-bit SPARC-V8 CPU that was 
developed by the European Space Agency. The source code 
of the CPU is written in VHDL and can be obtained on-line 
at no charge. The processor is highly configurable and 
particularly suitable for SoC Designs [6]. It is designed for 
embedded applications with the following features on-chip: 
separate instruction and data caches, hardware multiplier 
and divider, interrupt controller, debug support unit with 

trace buffer, two 24-bit timers, two UARTs, power-down 
function, watchdog, 16-bit I/O port and a flexible memory 
controller. 

2) AMBA bus 
The Advanced Microprocessor Bus Architecture (AMBA) 
on-chip bus is used in our design. AMBA AHB (Advanced 
High-performance Bus) and APB (Advanced Peripheral 
Bus) are used for communication between the processor, 
memory and IP Blocks, which are attached to both buses. In 
our design they are implemented as masters on the AHB bus 
but slaves on the APB bus. The AHB arbiter decides which 
master will get control of the bus. The only master on the 
APB bus is the APB Bridge that converts the system bus 
transfers into APB transfers. It latches the address, decodes 
it and generates the peripheral select signal. We have used 
the APB bus for control signals of the IP blocks and the 
AHB bus for data transfer. The test bench that is used in our 
design performs a boot of the CPU and transfers data and 
instructions to and from the user IP blocks via the AMBA 
bus. 

3) AES module 
A 128-bit AES decryption module is used in our design as a 
user IP block attached to AMBA bus. The module was 
developed at the University of Tennessee as part of our 
cryptographic key protection research project. The design 
reads in 128 bits of encrypted or cipher text as well as the 
encryption key, performs decryption and writes out 128 bits 
of plain text. The module has been verified with simulation 
and tested on a Virtex II Pro FPGA. 

4) Reconfigurable Block 
In our design, a small reconfigurable block is also attached 
to the AMBA bus serving as a second IP block. Since one 
goal of our project is to debug the design and the AES 
module has been thoroughly verified, it is less likely that 
there will be a design error in our AES IP block once the 
chip is fabricated. We inserted a small embedded-FPGA 
using the DAFCA pre-silicon tools in order to give us the 
flexibility to load different designs into our platform. Given 
that the block is reconfigurable, we can load a design with 
intentional errors to test the debugging method. 

5) Debugging Logic 
Reconfigurable instrumentation is inserted into our design 
using the pre-silicon DAFCA tools; this will enable users to 
isolate and repair bugs, as well as accelerate verification. It 
provides at-speed access to internal signals on the chip, 
delivers instrumentation for trigger and capture events, and 
also aids in in-situ repairs and signal generation. The 
DAFCA solution has both software and in-silicon 
components. In silicon, DAFCA provides a set of 
instrumentation capabilities that users tailor to their specific 
debug requirements. The software environment enables the 
user to specify where the instrumentation is placed on the 
chip (pre-silicon) and provides the debug, configuration and 
analysis capabilities (post-silicon).  DAFCA on-chip 
instruments use JTAG to connect to the debug software to 
eliminate the need for additional pin support. DAFCA 
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Reconfigurable Debug Infrastructure (ReDI) comes in two 
forms: customizable logic generated by the user with 
DAFCA tools and hardware library elements. 

The customizable logic provides both wrapping and tapping 
capabilities. A wrapped port/signal can be observed or 
controlled by the debug instrument. The debug instrument 
introduces a mux delay in the signal path, while a tapped 
port/signal can only be observed with the debug instrument. 
The customizable logic consists of: 

• rWRAP: A one-dimensional reconfigurable logic 
block array used for wrapping ports/signals. 

• rMATRIX: A two-dimensional reconfigurable 
logic block array used for wrapping ports/signals. 

• r1500: Reconfigurable wrapper cells compliant 
with IEEE Standard 1500. 

• CMUX: A highly configurable MUX used for 
tapping ports/signals. 

• CMUXB: A configurable single stage 2:1 MUX 
array.  

The hardware library elements are comprised of: 

• Primary Controller (PCON): It provides the 
interface between the JTAG TAP and the rest of 
the debug infrastructure. 

• Serial Access Node (SAN): It provides an interface 
between the end-point and the instrumentation 
access channel. 

• Monitor: It is a programmable “controller” and is 
used to manage assertions, triggers and tracer 
activity within the Debug module. 

• Tracer: It also forms a part of the Debug module 
and is used for storage of state information during 
logic analysis. 

B. SoC Design with DAFCA Design Flow 
The design flow of our SoC is shown in Figure 2. The 
reconfigurable IP blocks are inserted at the Register 
Transfer Level (RTL), followed by logic synthesis and 
physical place and route. 

 

Figure 2. DAFCA Design Flow 

1) RTL coding 

Our SoC is designed at the Register Transfer Level.  Most 
of the design is coded in VHDL. The Leon2 CPU is 
configured and slightly modified to suit our purpose. The 
instruction and data cache sizes in the system are minimized 
to save space in the chip. In order to integrate different IP 
blocks into the design, an AMBA bus interface is developed 
for each IP block such that it enables the cores to act as 
AHB bus masters and APB bus slaves. We have predefined 
the style of communication among the cores so that same 
interface can be used for other cores with minor 
modification. At this point, pre-layout simulation is done in 
ModelSim to verify the logic functionality of the design.  

2) ReDI instrumentation 
As described above, the ReDI instrumentation is inserted 
with DAFCA pre-silicon tools. We have wrapped most of 
the critical control circuits such as the control signals on the 
AMBA bus, as well as signals of the AMBA interface for 
the IP blocks because of the lack of test coverage. The user 
IP blocks are untouched since they are usually thoroughly 
verified, so there is less probability of error there. Besides 
the control signals, the data buses are tapped to give the 
designer the ability to observe internal data transfer after the 
design is fabricated.  

A Monitor and a Tracer memory block are also inserted to 
perform more complex debugging tasks and to store the 
state information that can be viewed in the post-silicon 
debugging environment. All of the tapped/wrapped signals 
are connected to the Monitor/Tracer module through a daisy 
chain of configurable multiplexers (CMUX). A PCON and 
several SANs are used to form the interface to JTAG TAP 
and form the serial access channel, which is used to access 
and configure the rest of the debug infrastructure. 

After the RTL instrumentation is done, simulation is also 
performed to make sure that the functionality of the design 
is not affected. 

3) Logic Synthesis and Place and Route. 
The design is then synthesized with the Synopsis Design 
Compiler targeting a TSMC 180-nm process. Artisan RAMs 
are used to implement the cache and register file in the 
Leon2. The synthesized net-list is placed and routed with 
the Cadence SoC Encounter tool. Post-layout simulation is 
done after the layout is generated using ModelSim. 

4) Post-silicon Debugging 
With the DAFCA instrumentation in place, we can perform 
at-speed in-system debug. The user can configure the 
instrumentation by identifying the signals to be monitored, 
and set internal traps or triggers. The ‘Personality Editor’ 
package of the tool enables us to program the reconfigurable 
wrappers to realize assertions, logic modifications and fixes. 
We can then run at-speed patterns through the system by 
executing system software. The internal state recorded by 
the Tracer in the debug module is then available for 
examination through the debug environment provided by 
NOVAS Debussy [9]. 
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The user selects a net or set of nets to be to be observed, and 
the DAFCA tools automate routing the nets through an 
interstitial PAN network, programming triggers, and starting 
the tracer block. The result is that the SoC is no longer a 
black box. The user has the ability to debug the silicon at 
speed, in the system, using the real logic and regains 
visibility to the signals that had become inaccessible. 

C. Area and Performance Overhead 
One of the most important considerations in using 
reconfigurable logic is the overhead. The flexibility of the 
design does not come for free. Instead, it imposes overhead 
in the SoC design in terms of area and delay. The amount of 
reconfigurable logic introduced in a SoC design is always 
about the tradeoff between the flexibility and the area/delay 
of the design. The impacts in delay and area for adding 
different DAFCA IP blocks are shown in Table 1. The area 
overhead for each ReDI IP core depends on the complexity 
and functionality of the block. As in timing, during normal 
operation, the additional delay for a wrapper is the delay of 
the MUX and the extra wiring delay caused by the increase 
of the circuit size. It should be noted that tapping a signal 
does not introduce any MUX delay.  

Table 1. Area and Performance Overhead 
ReDI Block rMUX r1500 rWRAP rMATRIX rMonitor 
Capability Observe  Observe, 

Control 
Observe, 
Control, 
Modify 

Observe, 
Control, 
Modify 

Observe, 
Control, 
Analyze 

Mux Delay No Yes Yes Yes No 
Size (gates) 10-100 / 

signal 
20-100 / 
signal 

100-500 / 
Signal 

500-2000 / 
signal 

2K/chip 

IV. Experiments and Results: 
The RTL design has been successfully instrumented and 
synthesized targeting a TSMC 180-nm process. The SoC 
platform, which has several components and reconfigurable 
blocks, has about 1.3M transistors.  

We have reduced the size of the original design to the 
minimum to save design space. In the meanwhile, we have 
been very generous adding in ReDI instrumentation to 
explore the strength of the reconfigurable logic in silicon 
debugging. The transistor count for the original design was 
850K, which is about 2/3 of the final design size.  

The physical layout was obtained with Cadence place and 
route tools. Several floorplans were tried in order to 
minimize the area and meet the timing constraints. The final 
floorplan is shown in Figure 3. 

Simulations are done after each stage: RTL development, 
DAFCA instrumentation insertion, synthesis, and physical 

place and route. DAFCA post-silicon tools are used to 
generate the ReDI block configurations and to simulate the 
functionality of the reconfigurable logic. The configuration 
bits are generated and loaded into the design through a 
JTAG interface. Then the instrumented design is simulated 
in NCSIM by Cadence. We plan to send the design for 
fabrication on a TSMC 180-nm process available via 
MOSIS. A testing board is being designed in order to test 
the chip after the design is fabricated. 

V. Conclusion 
In this paper, we discussed a new approach for modern SoC 
development. Compared to the traditional SoC design, we 
have proposed to use platform-based SoC with 
reconfigurable debugging logic. The DAFCA design flow 
was discussed to increase the flexibility of the chip and to 
achieve in-silicon, at-speed debugging.  We believe that this 
approach will greatly help the SoC designers debug their 
designs and hence improve design reliability by reducing 
the number of re-spins and the product’s time-to-market.  
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Figure 3. SoC Design Floorplan 
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