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Abstract  

     Hence, not all of the transistors on these chips can be 
customized but instead  must be ported from previous  
designs.  These reusable cores or intellectual property (IP) 
blocks include  CPUs (like  ARM,  MIPS  and  SPARC), 
MPEG decompression  engines,  PCI bus   controllers,  
specialized  DSPs,  etc.  Combining   several complex  
cores   using   gates   and  standard cells is much more 
manageable and quicker than designing millions of 
transistors one at a time. 

 
     Developing a complete System-on-Chip (SoC) with a  
CPU  core  and perhaps  a  dozen virtual   components  
by  a  fixed  deadline is no  easy  task.   Designers  may  
encounter  business  and  legal problems  in  obtaining 
the  virtual components and may find that information  is  
missing.   By  first   developing   a   platform containing 
these components, designers can overcome all of  these 
uncertainties  without  risking  the  delay  of  a  product. 
Once the   platform is fully operational,  derivative 
designs in which only  a  few  virtual  components  are  
added  or  dropped can be accomplished rapidly.  Xilinx, 
Altera, Triscend and Atmel have integrated CPU cores 
onto their chips  and  now offer  platform   SoCs  that are  
programmable.  The issues involved in adopting this 
approach are discussed. 

 
2. Reusing Components 
 
     The myth that characterizes today’s IP is that these 
components are blocks that have well-defined contents 
and interfaces.  However, they are often fuzzy and hence 
appear more like patches in a quilt, which must be 
stitched together.  The components cannot be assembled 
blindly and rapidly, but rather must be carefully pieced 
together to form a working system.  

 
 
1. Introduction      Therefore, design for reuse does not come free.  

Rather it involves much more in-depth documentation 
and characterization than for a design that is not intended 
to be reused.  Based on the experiences of  software 
engineers [3], it is estimated that preparing a component 
for reuse will require about 50% additional effort. 

     Multi-million transistor integrated circuits can now be 
produced cost-effectively [1].  Thus, designers are faced 
with the challenge of creating and verifying the content of 
these chips as quickly as possible in order to reduce the 
time-to-market.  It has been estimated that a one-month 
delay in bringing a product to market can result in a loss 
of ten percent of the potential revenue [2]. 

 
 
  
  
  
  
  
  
  
  
  
  
 

1.5
Design # 1 For Reuse 

Design #1 without 
Planned Reuse 1.0 

Design #2 without 
Planned Reuse 2.0

Design #3 without 
Planned Reuse 3.0

Designs #2, #3, #4, #5 and #6 3.0
 

  
 

Fig. 1. Timeline Comparison of Design Approaches. 
 

  
 



     Once this has been done, the designer who is reusing 
the component may naively think that his design time for 
that component will be reduced to zero.  But alas, he must 
take care to understand fully how the component works 
and how it should be integrated with other components.  
Again from the experiences of software engineers [3], the 
second design generally requires about 30% of that 
required to produce the component originally.  Thus, the 
reuse is not for free but does make a significant (70% 
reduction) impact on the next design.  A comparison of 
the traditional approach in which design reuse is not 
planned versus this new approach is depicted in Figure 1. 

     Designers are  increasingly  reusing significant   
portions   of   previous designs to reduce the time to 
market which generally  results  in greater  revenue for 
the product.   Reuse of previous designs has been 
occurring for decades.  Initially, only simple library cells 
were implemented with reuse in mind and this continues 
today.  In the past few years, major  functions  have  been  
implemented  as virtual  components.   Since  these  may  
have  been developed by designers in other companies, 
their reuse involves a  combination of  effort  and  risk  in  
a new design.  To minimize these, some organizations are 
internally standardizing on a  set  of  virtual components  
and  any associated software to develop their own SoC 
platforms.  

     The information required to document soft IP consists 
of far more than just the source code.  Also needed are:  
(1) functional description, (2) application intent, (3) 
interface specifications, (4) authors and owners, (5)  
packaging information, (6) input stimuli and output 
responses (test bench), (7) tools and versions used, (8) 
FPGA or ASIC foundry used for fabrication, (9) size, 
delay and power measurements, and (10) testability 
features including BIST, JTAG and SCAN. 

     Platform-based design allows an organization to 
develop a complete SoC that is central to its product line.  
Once the SoC platform is fully operational, derivative 
designs in which only  a  few  virtual  components  are  
added  or  dropped can be accomplished rapidly.   
     Developing a complete SoC with ten or more virtual   
components  by  a  fixed  deadline  is  no  easy  task. 
Designers may encounter business and legal problems in  
obtaining the  virtual components and may find that 
information is missing. Developing a platform permits 
designers to overcome all of  these uncertainties  without  
risking  the  delay  of  a  product. 

 
3. Design of Platform SoCs 
 
     System-on-Chip (SoC) design may involve the mixing 
on a single integrated circuit a microprocessor core (e.g. 
ARM, MIPS, SPARC), PCI bus interface, analog 
components and numerous digital processing  functions.  
Figure 2 depicts a typical SoC. 

     Figure 3 depicts a comparison of using unproven 
versus proven components.  If the probability of being 
correct is 0.9 for each component and their 
interconnection, then the probability that the entire SoC 
will be correct is only 0.5.  Thus, a significant amount of 
time must be taken for verification to achieve first-pass 
success.  On the other hand, if all of the components 
except a new one and its interconnection are already 
proven, then the probability of the entire SoC being 
correct is improved to 0.8.  Thus, far less time need be 
allocated for verification.  It is this contrast which 
serves as the compelling motivation to adopt a 
platform-based design approach. 

 

Fig. 2. Typical SoC 

     Moreover, a platform SoC  also  provides  software  
developers  with  working silicon  they  can use.  The 
organization can market the platform SoC to customers as 
a demonstration of what can be done and  even provide  
the customers with the opportunity to commence their 
own product  development  using  the  existing  SoC.   
Whenever   the customer  determines  that  it is 
worthwhile to have a derivative design  customized  for  
his  product  needs,  the  platform  SoC designers  add  or  
subtract a small number of virtual components and revise 
the associated software.  The  derivative  design  can 
likely   be  done  in  less  than  six  months  from  concept  
to production. 



 

 
4. Existing Platform SoCs      FPGA vendors have integrated CPU cores onto their 

chips  and  now offer  platform  SoCs that are 
programmable. Triscend offers both the 8032 8-bit 
microcontroller and  the  32- bit  ARM7TDMI   core with    
its    programmable    logic    family [7].      

 
     Several  organizations  are  using  this  platform-based   
design approach.   Philips  Semiconductors has developed a 
digital video platform SoC intended for set-top boxes.  The 
SoC includes a  32-bit  MIPS microprocessor core plus 
Philips' own Trimedia core and an MPEG-2 decoder.  
Interface circuitry for PCI, UART and USB are also 
included [4].   

     Xilinx offers a choice of the IBM PowerPC, Intel's 
StrongARM  and Pentium  class,  and  QED  processors  for 
its Virtex and Spartan product line.  The PowerPC 405 is 
embedded as a hard-core in  the Virtex-II  architecture and 
can operate at 300 MHz to produce 420 Dhrystone MIPs [8].        Tality, the design services spin-off of  Cadence,  has  

developed two  SoC platforms.  One includes both an ARM 
microprocessor core coupled with the popular OAK digital 
signal  processor.   Another  platform  is  targeted  for  the  
bluetooth wireless market [5].    

     Atmel offers the popular 8051, ARM and AVR 8-bit 
microcontrollers embedded   in   its   programmable   
product  line.   A  field-programmable  system-level  
integrated  circuit  starter  kit  is available at very low cost. 
[9].        Infineon has developed a triple-mode SoC  platform  for  

wireless applications.  It includes a 32-bit microcontroller 
and a digital signal processor [6]. 

     Altera offers a choice of  CPU  cores  including  the  
ARM,  MIPS Technologies  and  Altera's  internally   
developed Nios embedded processor [10].    

  
   

  
  
  
  
  



5. Developing Open SoCs 
 
     A database of commercial IP blocks is now on-line [11].  
Thus, SoC developers can identify reusable components to 
be integrated into their platforms.  Business and legal issues 
must be pursued individually for each component but the 
development of a SoC is undoubtedly facilitated. 
     Free IP blocks are also available on-line [12].  These 
include USB 2.0 and Ethernet MAC interfaces as well as 
DES/AES encryption blocks and microcontrollers. A 32-bit 
SPARC-V8 that was developed by the European Space 
Agency is also available on-line [13]. The source codes for 
all of these can be downloaded by anyone at no charge. 
     Thus, universities and individuals can and are developing 
open SoCs to serve as education and research platforms. In 
our advanced graduate electives at the University of 
Tennessee [14], the initial course in a two-semester 
sequence provides the students with the opportunity to learn 
how to synthesize small pieces of HDL source code into 
FPGAs.  In the second semester, larger projects are assigned 
that require a team of generally four students to implement.  
The application requirements are first presented in narrative 
form and the team members must partition the design into 
manageable modules.  Each module is the responsibility of 
an individual to capture in VHDL, synthesize and simulate 
as well as verify in an FPGA.  Once each student believes 
his design is “known good”, the team then integrates the 
components into a single-chip ASIC.  Obviously, any 
deficiencies not already corrected by individual designers 
must be dealt with during this integration or design with 
reuse phase.  It is not unusual for a student to recognize that 
the quality of his component or his documentation is 
substandard and hence some redesign or additional 
documentation is performed until the full system works 
properly. 
     Projects following the model just described are intended 
to provide individual students with the experience of 
designing for reuse and the team of designers with the 
experience of design with reuse.   Example projects 
completed or underway include:  Wavelet Image 
Compression, Huffman Encoding, LZ Data Compression, 
Discrete Cosine Transform, Fast Fourier Transform, 
CORDIC 2-D Vector Rotation, Automatic Target 
Recognition, Constant False Alarm Rate, Data Encryption, 
and Boolean Satisfiability. 
     All of the examples given so far have been for 
developing soft IP using a HDL for implementation using 
FPGAs or single-chip ASICs.  These are appropriate for 
advanced graduate electives which are targeted at 
developing system-on-a-chip designers.  For senior capstone 
courses, projects must generally involve integrating existing 
hardware and software components with only a limited 
amount of time available for creating new components. 
  

6. Conclusions  
 
     Developing a platform SoC with a  CPU  core  and 
perhaps  a  dozen virtual   components  removes the 
uncertainties about the individual components and their 
interconnection such that derivative designs can be 
accomplished rapidly.  Programmable SoCs and commercial 
and open cores can be exploited in this endeavor.  
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