Modern Physical Design: Algorithm Technology Methodology

Andrew B. Kahng UCLA Majid Sarrafzadeh Northwestern

Introduction

- This tutorial will cover "the latest word" in physical chip implementation methodology and physical design (PD) algorithm technology.
- The target audience consists of
 - system and circuit designers who would benefit from understanding tool capabilities in this arena,
 - CAD engineers (both R&D and support),
 - design project managers,
 - academic researchers.
- Familiarity with basic PD methodology is assumed.

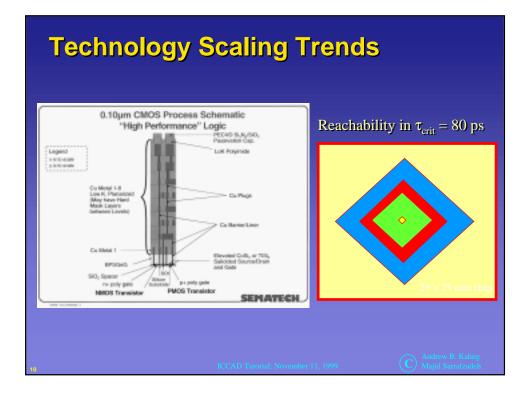
Trade-Off: Depth vs. Breadth

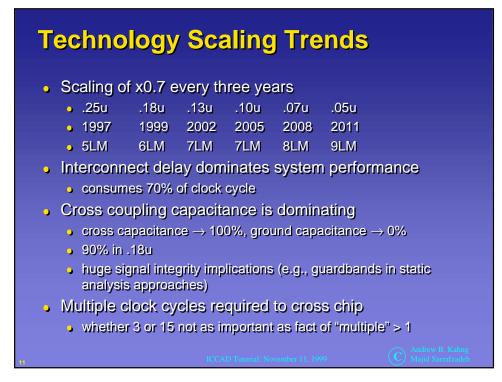
- Broad spectrum of possible material
- Only ~6-7 hours for presentation
- Not all possible topics covered in slides, not all slides covered in talks
 - ask questions if you'd like to hear about something in particular, esp. related to methodology or particular P&R techniques
- All tutorial materials will be available in softcopy at
 - http://vlsicad.cs.ucla.edu/ICCAD99TUTORIAL
 - http://www.ece.nwu.edu/nucad/ICCAD99TUTORIAL

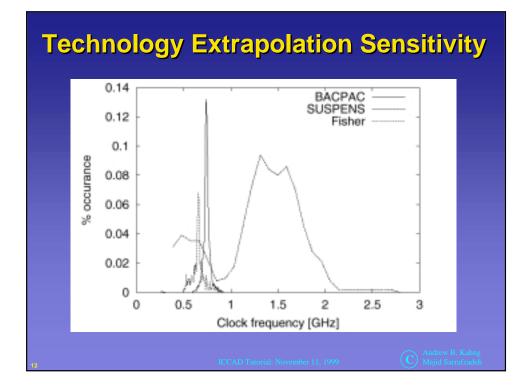
Overview of the Tutorial

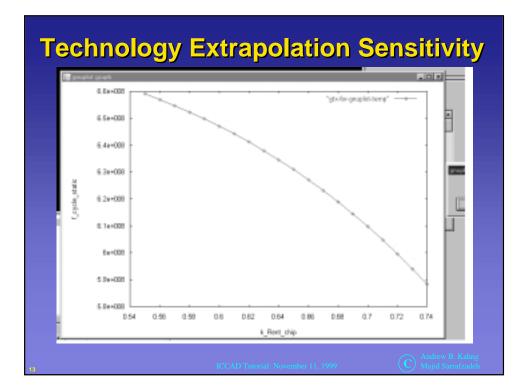
- PART I: Technology and Methodology Context Setting (9:00 - 10:00)
- PART II: Fundamental Physical Design Formulation and Algorithms (10:00 - 12:00)
 - Coffee Break (10:30 10:45)
 - Lunch (12:00 1:00)
- PART III: Interaction with Upstream Floorplanning and Logic Synthesis (1:00 - 2:00)
- PART IV: Interaction with extraction, analysis, and performance validation (2:00 - 3:30)
 - Coffee Break (3:30 3:45)
- PART V: Linkage to Custom Layout (3:45 4:45)
- Conclusion (4:45 5:00)

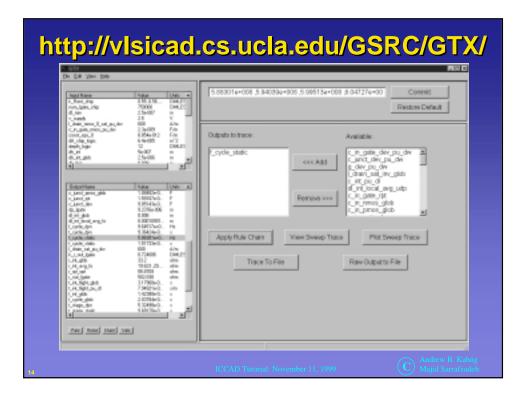
Overall Roadmap Technology Characteristics

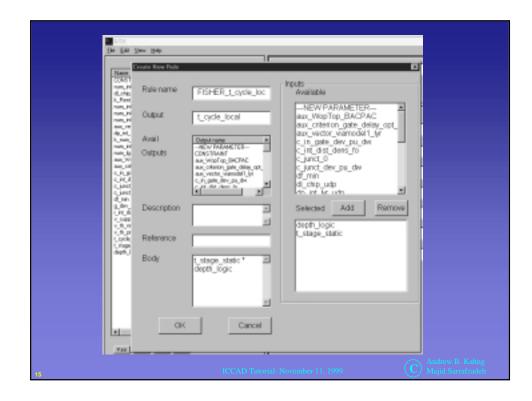

YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014			
TECHNOLOGY NODE										
DENSE LINES (DRAM HALF-PITCH) (nm)	250	180	130	100	70	50	35			
ISOLATED LINES (MPU GATES) (nm)	200	140	100	70	50	35	25			
Logic (Low-Volume-ASIC)‡										
Usable transistors/cm2 (auto layout)	8M	14M	24M	40M	64M	100M	160M			
Nonrecurring engineering cost	50	25	15	10	5	2.5	1.3			
/usable transistor (microcents)	50	20	15	10	5	2.5	1.0			
Number of Chip I/Os – Maximum										
Chip-to-package (pads)	1515	1867	2553	3492	4776	6532	8935			
(high-performance)	1313	1007	2000	5432	4//0	0332	0333			
Chip-to-package (pads)	758	934	1277	1747	2386	3268	4470			
(cost-performance)					2000	0200				
Number of Package Pins/Balls – Maximum										
Microprocessor/controller	568	700	957	1309	1791	2449	3350			
(cost-performance)	000	100	001	1000		2440	0000			
ASIC	1136	1400	1915	2619	3581	4898	6700			
(high-performance)				2010		1000	0.00			
Package cost (cents/pin)	0.78-2.71	0 70-2 52	0.60-2.16	0 51-1 85	0 44-1 59	0 38-1 36	0.33-1.17			
(cost-performance)										
Power Supply Voltage (V)										
Minimum logic Vdd (V)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.37-0.42			
Maximum Power										
High-performance with heat sink (W)	70	90	130	160	170	175	183			
Battery (W)—(Hand-held)	1.2	1.4	2	2.4	2.8	3.2	3.7			

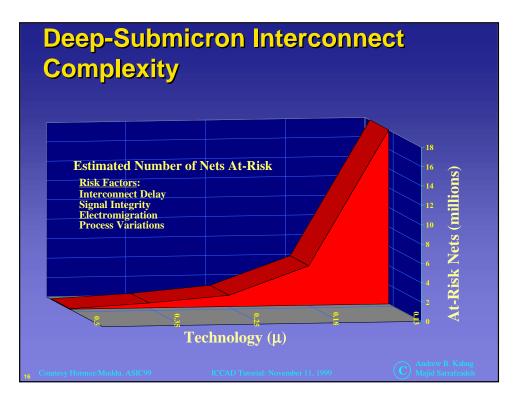

Overall Roadmap Technology Characteristics (Cont'd)


YEAR OF FIRST PRODUCT SHIPMENT	1997	1999	2002	2005	2008	2011	2014			
TECHNOLOGY NODE DENSE LINES (DRAM HALF-PITCH) (nm)	250	180	130	100	70	50	35			
Chip Frequency (MHz)										
On-chip local clock (high-performance)	750	1250	2100	3500	6000	10000	16903			
On-chip, across-chip clock (high-performance)	375	1200	1600	2000	2500	3000	3674			
On-chip, across-chip clock (high-performance ASIC)	300	500	700	900	1200	1500	1936			
On-chip, across-chip clock	400	600	800	1100	1400	1800	2303			
(cost-performance)										
Chip-to-board (off-chip) speed (high-performance, reduced-width, multiplexed bus)	375	1200	1600	2000	2500	3000	3674			
Chip-to-board (off-chip) speed (high-performance, peripheral buses)	250	480	885	1035	1285	1540	1878			
Chip Size (mm2) (@sample/introduction)										
DRAM	280	400	560	790	1120	1580	2240			
Microprocessor	300	340	430	520	620	750	901			
ASIC [max litho field area]	480	800	900	1000	1100	1300	1482			
Lithographic Field Size (mm2)	22 x 22	25 x 32	25 x 36	25 x 40	25 x 44	25 x 52	25 x 59			
	484	800	900	1000	1100	1300	1482			
Maximum Number Wiring Levels	6	6–7	7	7–8	8–9	9	10			
					C Andrew B. Kahng Majid Sarrafzadeh					


Technology Scaling Trends


- Interconnect
 - Impact of scaling on parasitic capacitance
 - Impact of scaling on inductance coupling
 - Impact of new materials on parasitic capacitance & resistance
 - Trends in number of layers, routing pitch
- Device
 - V_{dd}, V_t, sizing
 - Circuit trends (multithreshold CMOS, multiple supply voltages, dynamic CMOS)
 - Impact of scaling on power and reliability





Scaling of Noise with Process

- Cross coupling noise increases with
 - process shrink
 - frequency of operation
- Propagated noise increases with decrease in noise margins
 - decrease in supply voltage
 - more extreme P/N ratios for high speed operation
- IR drop noise increases with
 - complexity of chip size
 - frequency of chip
 - shrinking of metal layers

New Materials Implications

- Lower dielectric
 - reduces total capacitance
 - doesn't change cross-coupled / grounded capacitance proportions
- Copper metallization
 - reduces RC delay
 - avoids electromigration (factor of 4-5 ?)
 - thinner deposition reduces cross cap
- Multiple layers of routing
 - enabled by planarized processes; 10% extra cost per layer
 - reverse-scaled top-level interconnects
 - relative routing pitch may increase
 - room for shielding

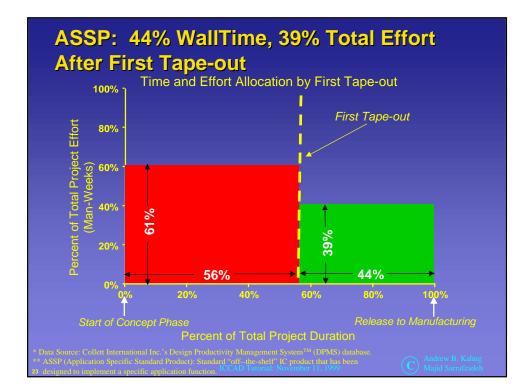
Technical Issues in UDSM Design

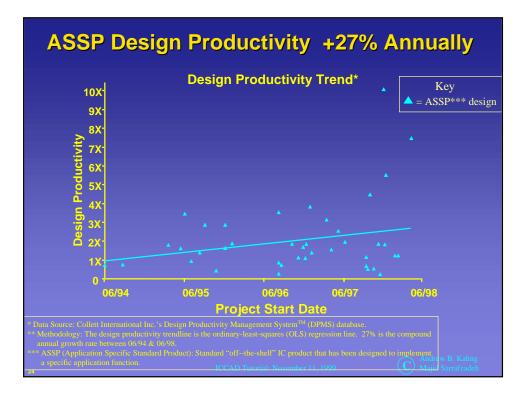
New issues and problems arising in UDSM technology

- catastrophic yield: critical area, antennas
- parametric yield: density control (filling) for CMP
- parametric yield: subwavelength lithography implications
 - optical proximity correction (OPC)
 - phase-shifting mask design (PSM)
- signal integrity
 - crosstalk and delay uncertainty
 - DC electromigration
 - AC self-heat
 - hot electrons

Current context: cell-based place-and-route methodology

- placement and routing formulations, basic technologies
- methodology contexts


Technical Issues in UDSM Design


- Manufacturability (chip can't be built)
 - antenna rules
 - minimum area rules for stacked vias
 - CMP (chemical mechanical polishing) area fill rules
 - layout corrections for optical proximity effects in subwavelength lithography; associated verification issues
- Signal integrity (failure to meet timing targets)
 - crosstalk induced errors
 - timing dependence on crosstalk
 - IR drop on power supplies
- Reliability (design failures in the field)
 - electromigration on power supplies
 - hot electron effects on devices
 - wire self heat effects on clocks and signals

Why Now?

- These effects have always existed, but become worse at UDSM sizes because of:
 - finer geometries
 - greater wire and via resistance
 - higher electric fields if supply voltage not scaled
 - more metal layers
 - higher ratio of cross coupling to grounded capacitance
 - lower supply voltages
 - more current for given power
 - lower device thresholds
 - smaller noise margins
- Focus on interconnect
 - susceptible to patterning difficulties
 - CMP, optical exposure, resist development/etch, CVD, ...
 - susceptible to defects
 - critical area, critical volume

Gates/Cells Xtrs Masks Chip ► SW design Logic optimization Mas Detailed Design rection Partitioning placement Yield Technology Detailed ► Functional optimization mapping mapping routing Sorting Floorplanning Analysis Performance Power ⊳ N/A modeling estimation distribution Power analysis estimation System simulation Functional · C ⊳ N/A Verification simulation simulation LVS/DRC Formal checking Equivalence checking Static timing verification Chip test & ► Test Test logic Test Pattern Test diagnostics architecture insertion model generation & generation merge New Figure 4 (Draft Rev. B, 3-12-99) Red denotes most challenging activity

Silicon Complexity and Design Complexity

- Silicon complexity: physical effects cannot be ignored
 - fast but weak gates; resistive and cross-coupled interconnects
 - subwavelength lithography from 350nm generation onward
 - delay, power, signal integrity, manufacturability, reliability all become first-class objectives along with area
- Design complexity: more functionality and customization, in less time
 - reuse-based design methodologies for SOC
- Interactions increase complexity
 - need robust, top-down, convergent design methodology

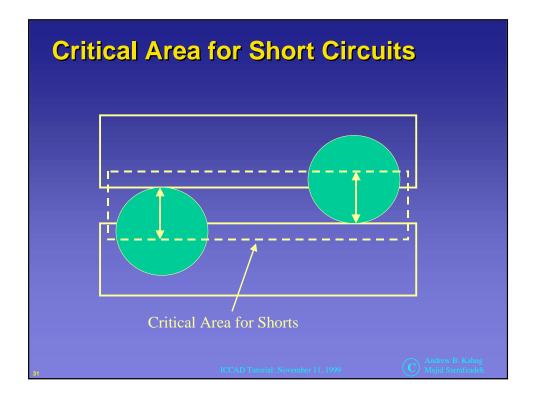
Guiding Philosophy in the Back-End

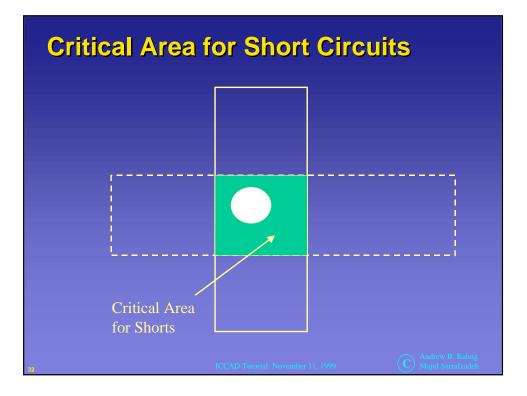
- Many opportunities to leave \$\$\$ on table
 - physical effects of process, migratability
 - design rules more conservative, design waivers up
 - device-level layout optimizations in cell-based methodologies
- Verification cost increases
- Prevention becomes necessary complement to checking
- Successive approximation = design convergence
 - upstream activities pass intentions, assumptions downstream
 - downstream activities must be predictable
 - models of analysis/verification = objectives for synthesis
- More "custom" bias in automated methodologies

Implications of Complexity

UDSM: Silicon complexity + Design complexity


convergent design: must abstract what's beneath


- prevention with respect to analysis/verification checks
- many issues to worry about (all are "first-class citizens"
- apply methodology (P/G/clock design, circuit tricks, ...) whenever possible
- must concede loss of clean abstractions: need unifications
 - synthesis and analysis in tight loop
 - logic and layout : chip implementation planning methodologies
 - layout and manufacturing : CMP/OPC/PSM, yield, reliability, SI, statistical design, ...
- must hit function/cost/TAT points that maximize \$/wafer
 - reuse-based methodology
 - need for differentiating IP \rightarrow <u>custom</u>-ization

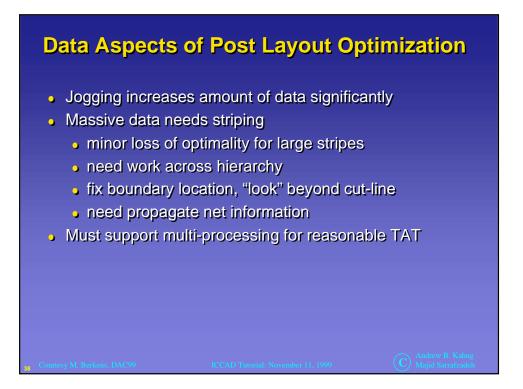

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Example: Defect-related Yield Loss

- High susceptibility to spot defect-related yield loss, particularly in metallization stages of process
- Most common failure mechanisms: shorts or opens due to extra or missing material between metal tracks
- Design tools fail to realize that values in design manuals are minimum values, not target values
- Spot defect yield loss modeling
 - extremely well-studied field
 - first-order yield prediction: Poisson yield model
 - critical-area model much more successful
 - fatal defect types (two types of short circuits, one type of open)

Approaches to Spot Defect Yield Loss

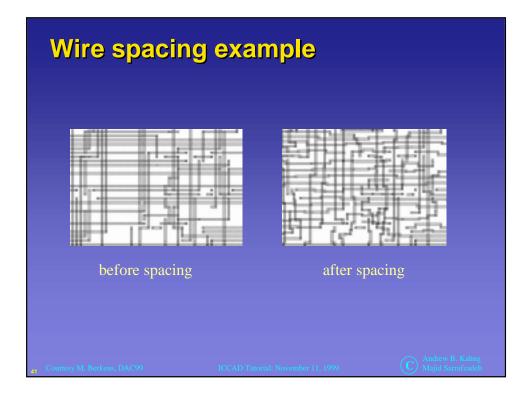
- · Modify wire placements to minimize critical area
- Router issue
 - router understands critical-area analyses, optimizations
 - spread, push/shove (gridless, compaction technology)
 - layer reassignment, via shifting (standard capabilities)
 - related: via doubling when available, etc.
- Post-processing approaches in PV are awkward
 - breaks performance verification in layout (if layout has been changed by physical verification)
 - no easy loop back to physical design: convergence problems


<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

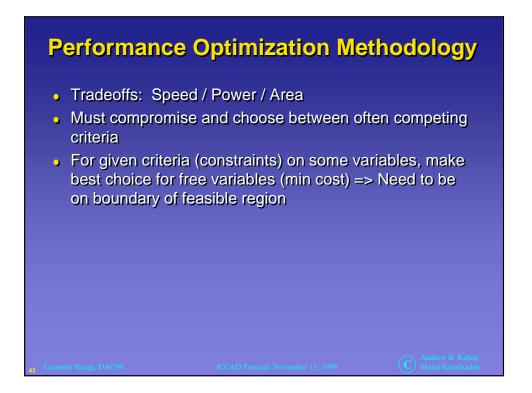
Antennas

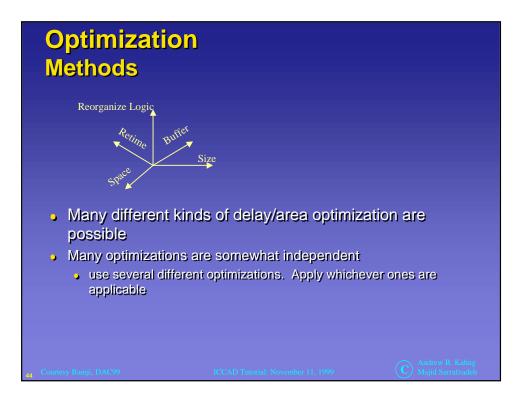
- Charging in semiconductor processing
- Standard solution: limit antenna ratio
 - antenna ratio = $(A_{poly} + A_{M1} + ...) / A_{gate-ox}$
 - e.g., antenna ratio < 300
 - A_{Mx} = metal (x) area electrically connected to node without using metal (x+1), and not connected to an active area

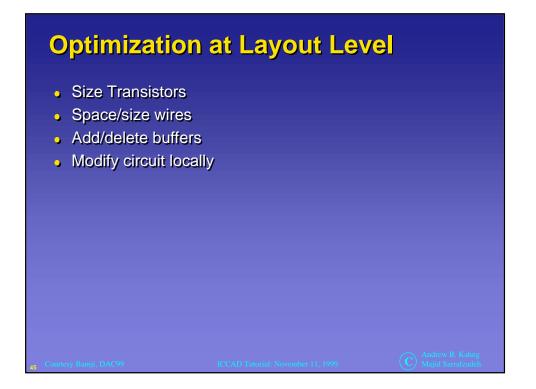
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

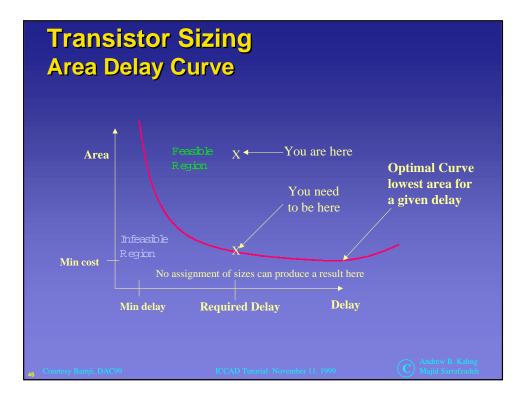


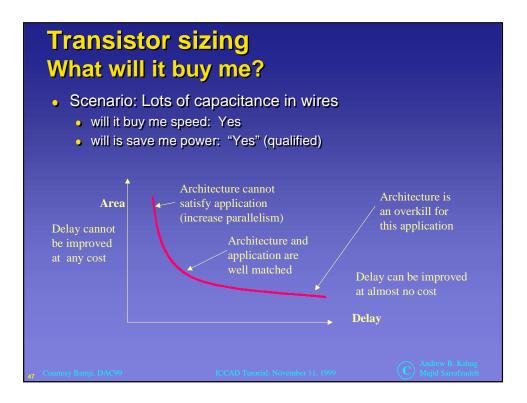


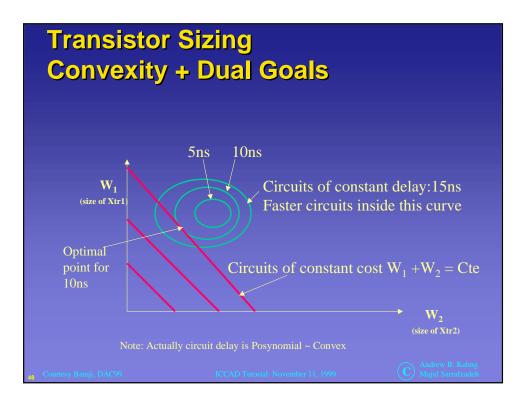



- Pre routing specification
 - convenient, handled by router
 - robust but conservative
 - may consume big area
- Post routing specification
 - area efficient-shield only where needed & have space
 - ease task of router
 - sufficient shielding is not guaranteed
- Either way: definite interactions w/ fill insertion, possible interactions w/ phase-shifting (M1,M2?)

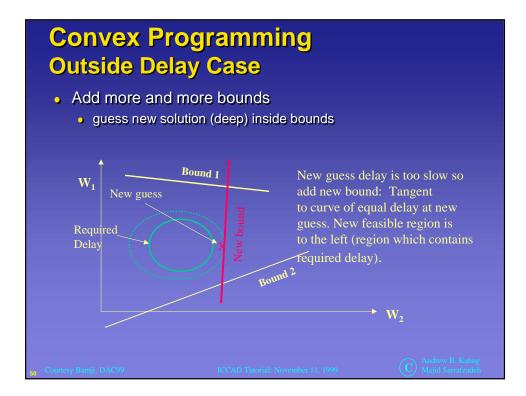


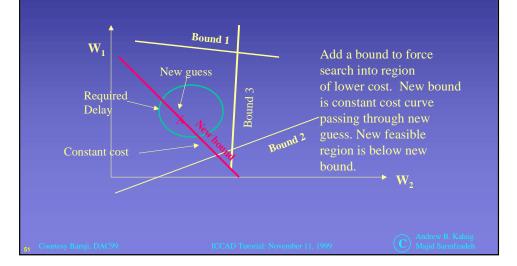


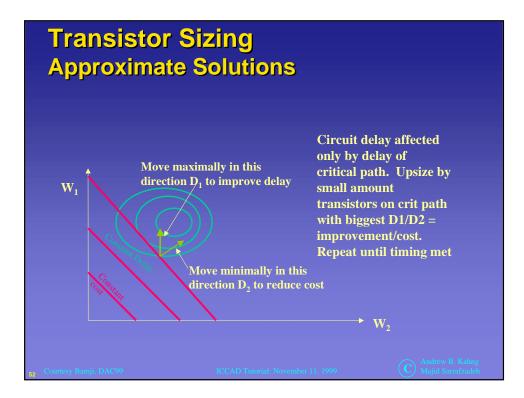


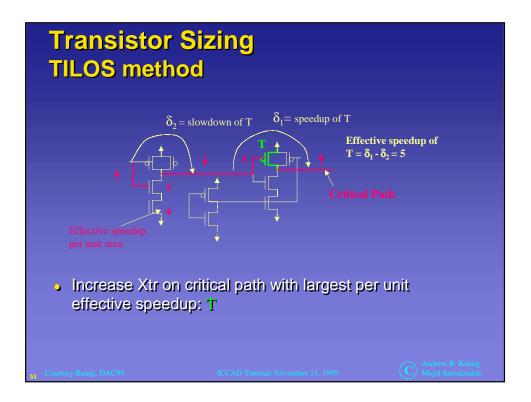


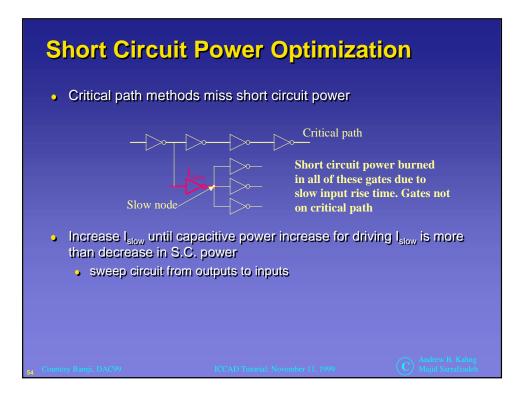


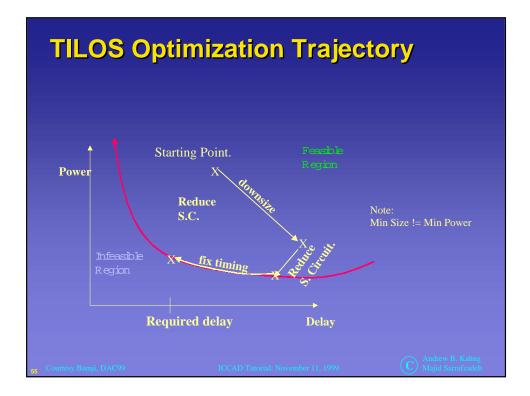


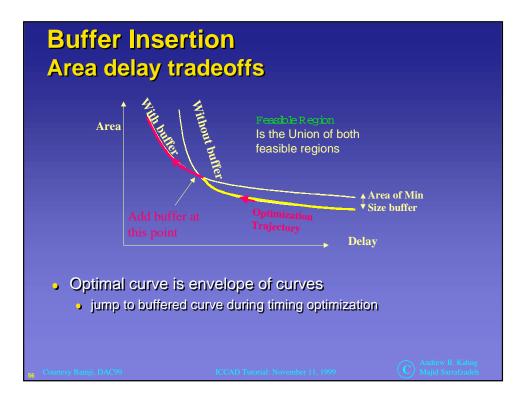


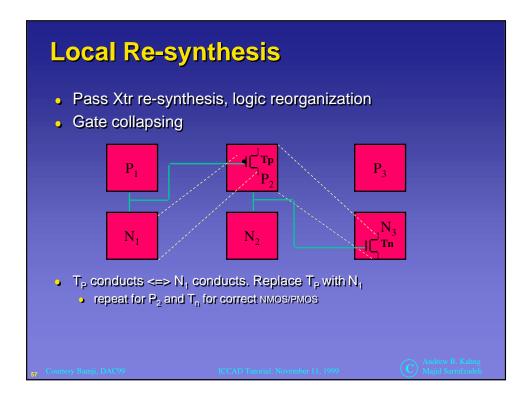


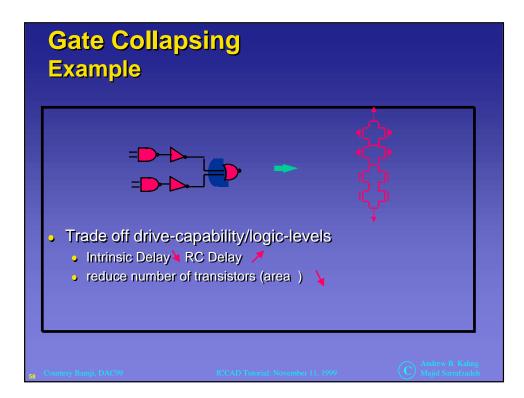





New guess delay is adequate but try and improve cost







Outline

- Technology trends
- Post-layout optimization methodologies
 - manufacturability and reliability
 - performance
- Custom or custom-on-the-fly methodologies
- Flavors of classic planning-based methodologies
- Implications for P&R

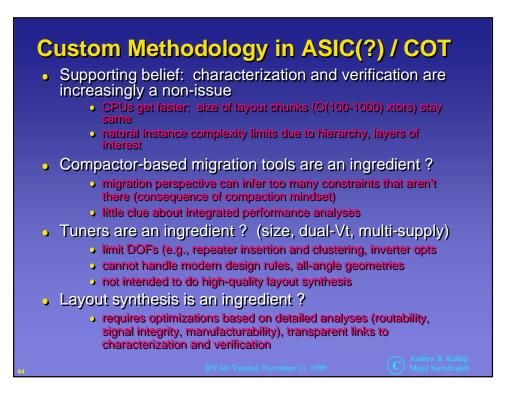
Custom Methodology in ASIC(?) / COT

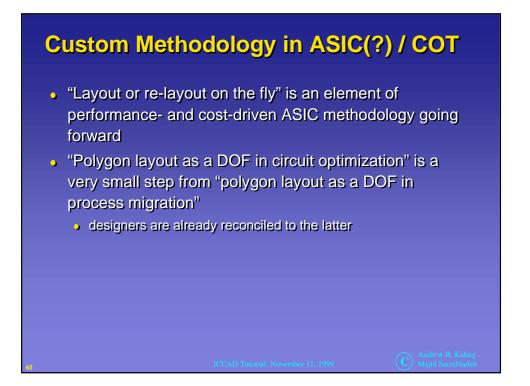
- How much is on the table w.r.t. performance?
 - 4x speed, 1/3x area, 1/10x power (Alpha vs. Strongarm vs. "ASIC")
 - layout methodology spans RTL syn, auto P&R, tiling/generation, manual
 - library methodology spans gate array, std cell, rich std cell, liquid lib,
- Traditional view of cell-based ASIC
 - Advantages: high productivity, TTM, portability (soft IP, gates)
 - Disadvantages: slower, more power, more area, slow production of std cell library
- Traditional view of Custom
 - Advantages: faster, less power, less area, more circuit styles
 - Disadvantages: low productivity, longer TTM, limited reuse

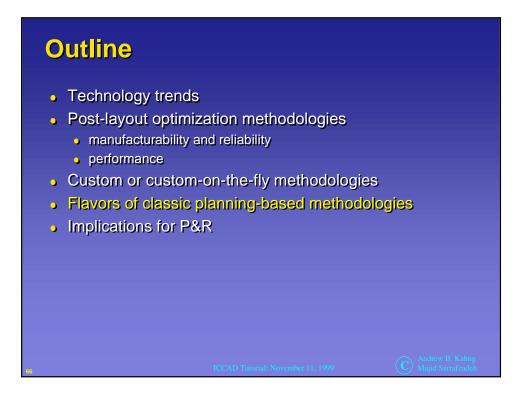
Custom Methodology in ASIC(?) / COT

With sub-wavelength lithography:

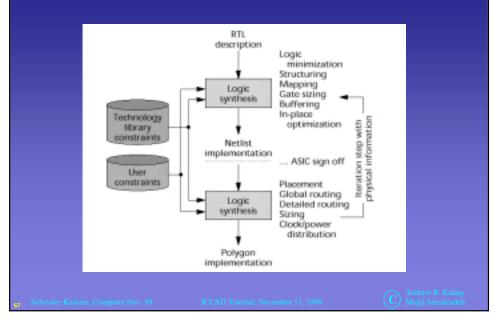
- how much more guardbanding will standard cells need?
- composability is difficult to guarantee at edges of PSM layouts, when PSM layouts are routed, when hard IPs are made with different density targets, etc.
- context-independent composability is the foundation of cellbased methodology!
- With variant process flavors:
 - hard layouts (including cells) will be more difficult to reuse
- → Relative cost of custom decreases
- On the other hand, productivity is always an issue...

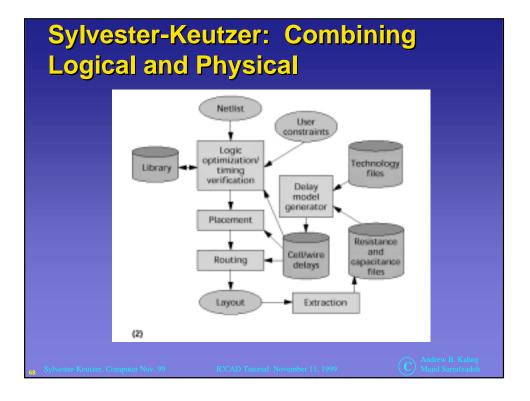

Custom Methodology in ASIC(?) / COT

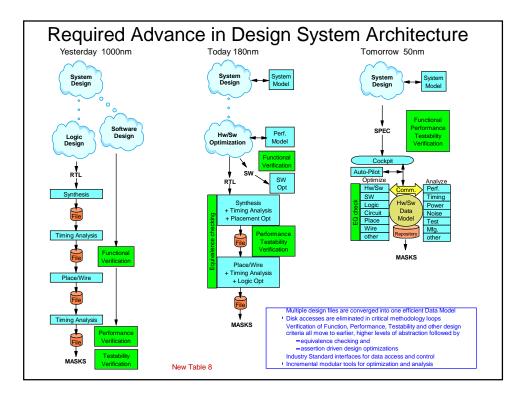

- Architecture
 - heavy pipelining
 - fewer logic levels between latches
- Dynamic logic
 - used on all critical paths
- Hand-crafted circuit topologies, sizing and layout
 - good attention to design reduces guardbands

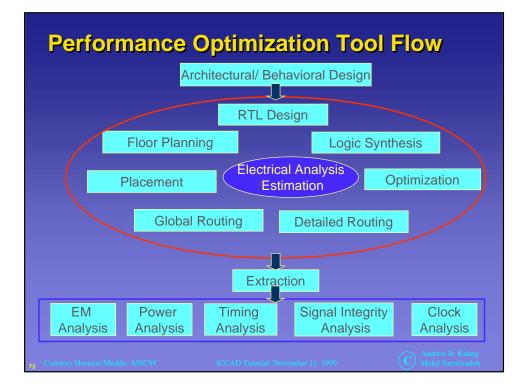

The last seems to be the lowest-hanging fruit for ASIC

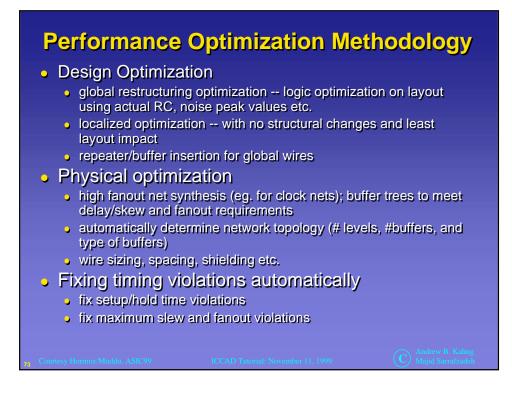
Custom Methodology in ASIC(?) / COT

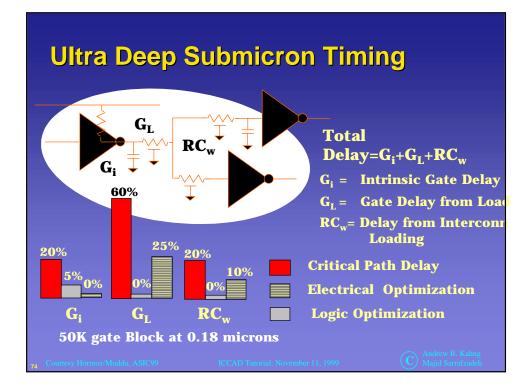

- ASIC market forces (IP differentiation) will define needs for xtor-level analyses and syntheses
- Flexible-hierarchical top-down methodology
 - basic strategy: iteratively re-optimize chunks of the design as defined by the layout, i.e., cut out a piece of physical hierarchy, reoptimize it ("peephole optimization")
 - for timing/power/area (e.g., for mismatched input arrival times, slews)
 - for auto-layout (e.g., pin access and cell porosity for router)
 - for manufacturability (density control, critical area, phaseassignability)
 - DOF's: diffusion sharing, sizing, new mapping / circuit topology sol's
 - chunk size: as large as possible (tradeoff between near-optimality, CPU time)
 - antecedents: IBM C5M, Motorola CELLERITY, DEC CLEO
 - "infinite library"recovers performance, density that a 300-cell library and classic cell-based flow leave on the table







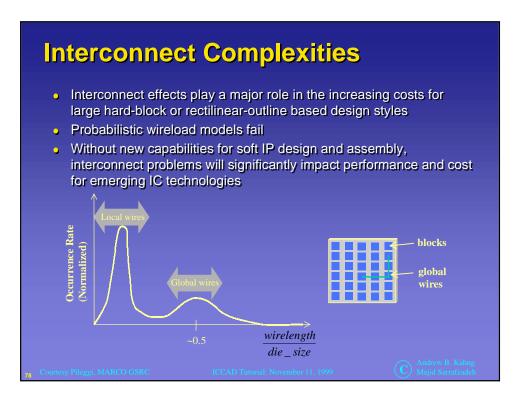

Planning / Implementation Methodologies

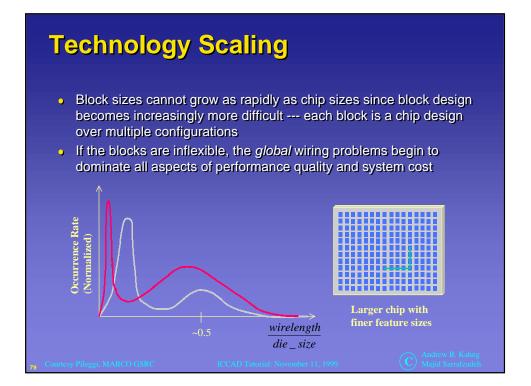

- Centered on logic design
 - wire-planning methodology with block/cell global placement
 - global routing directives passed forward to chip finishing
 - constant-delay methodology may be used to guide sizing
- Centered on physical design
 - placement-driven or placement-knowledgeable logic synthesis
- Buffer between logic and layout synthesis
 - placement, timing, sizing optimization tools
- Centered on SOC, chip-level planning
 - interface synthesis between blocks
 - communications protocol, protocol implementation decisions guide logic and physical implementation

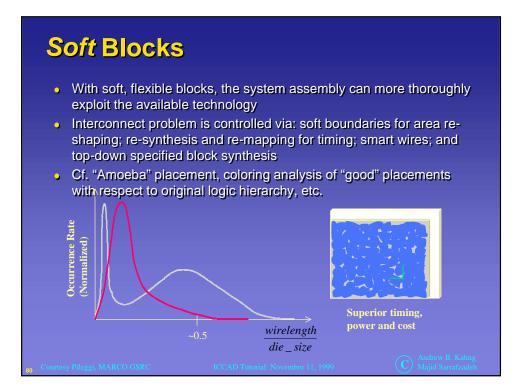
Planning / Implementation Methodologies

- Centered on logic design
 - wire-planning methodology with block/cell global placement
 - global routing directives passed forward to chip finishing
 - constant-delay methodology may be used to guide sizing
- Centered on physical design
 - placement-driven or placement-knowledgeable logic synthesis
- Buffer between logic and layout synthesis
 - placement, timing, sizing optimization tools
- Centered on SOC, chip-level planning
 - interface synthesis between blocks
 - communications protocol, protocol implementation decisions guide logic and physical implementation

KEY ISSUE: PREDICTABILITY


- Everything we do is ultimately aimed at a predictable, estimatable back end (physical implementation after some handoff level of design)
- Predictability == regression models
- Predictability == an enforceable assumption
 constant-delay paradigm (logical effort, DEC, IBM, ...)
- Predictability == fast constructive prediction
 RT-level (Tera), gate-level flat full-chip (SPC)
- Predictability == remove the need for predictability
 - GALS, LIS
 - "protocol- / communication-based system-level design"


Problems With Physical Hierarchy


- Physical hierarchy = hierarchical organization of the core layout region
- In general, <u>no relation</u> to high-quality (e.g., w.r.t. timing, routability) embedding of logic
 - artifactual physical hierarchy created by top-down placers
 - core region is relatively homogeneous, isotropic: imposing a hierarchy is generally harmful
- Of course, some obvious exceptions
 - regular structures (memories, PLAs, datapaths)
 - hard IP blocks
 - but these don't fit well in top-down placement anyway
- General trend: non-hierarchical embedding approaches

The Problem With Hierarchies

- Two hierarchies: logical/functional, and physical
 schematic hierarchy also typical in structured-custom
- RTL design = logical/functional hierarchy
 - provides valuable clues for physical embedding: datapath structure, timing structure, etc.
 - can be incredibly misleading (e.g., all clock buffers in a single hierarchy block)
- Main issues:
 - how to leverage logical/functional hierarchy during embedding
 - when to deviate from designer's hierarchy
 - methodology for hierarchy reconciliation (buffers, repartitioning / reclustering, etc.)

Soft-Block Assembly

- Hard rectilinear blocks make prediction of global wires extremely difficult
- Top-down constraint-driven assembly of soft fabrics: ability to significantly restructure circuit level blocks during the assembly process helps reach performance goals
 - For example, timing-critical interconnect paths can be completely restructured during assembly without changing any of the system level specification
- Key issue: how to determine the soft blocks in the first place
 - non-classical partitioning objectives: area sensitivity, functional and clocking structure, critical timing-path awareness, matching capabilities of block placer
 - block placement: largely unsolved issue
 - unclear whether packing-centric or connectivity-centric approaches are best

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Cell-Based P&R: Classic Context

- Architecture design
 - golden microarchitecture design, behavioral model, RT-level structural HDL passed to chip planning
 - cycle time and cycle-accurate timing boundaries established
 - hierarchy correspondences (structural-functional, logical (schematic) and physical) well-established
- Chip planning
 - hierarchical floorplan, mixed hard-soft block placement
 - block context-sensitivity: no-fly, layer usage, other routing constraints
 - route planning of all global nets (control/data signals, clock, P/G)
 - induces pin assignments/orderings, hard (partial) pre-routes, etc.
- Individual block design -- various P&R methodologies
- Chip assembly -- possibly implicit in above steps
- What follows: qualitative review of key goals, purposes

C Andrew B. Kahng Majid Sarrafzadeh

Placement Directions

- Global placement
 - engines (analytic, top-down partitioning based, (iterative annealing based) remain the same; all support "anytime" convergent solution
 - becomes more hierarchical
 - block placement, latch placement before "cell placement"
 - support placement of partially/probabilistically specified design
- Detailed placement
 - LEQ/EEQ substitution
 - shifting, spacing and alignment for routability
 - ECOs for timing, signal integrity, reliability
 - closely tied to performance analysis backplane (STA/PV)
 - support incremental "construct by correction" use model

Function of a UDSM Router

- Ultimately responsible for meeting specs/assumptions
 - slew, noise, delay, critical-area, antenna ratio, PSM-amenable ...
- Checks performability throughout top-down physical impl.
 - actively understands, invokes analysis engines and macromodels
- Many functions
 - circuit-level IP generation: clock, power, test, package substrate routing
 - pin assignment and track ordering engines
 - monolithic topology optimization engines
 - <u>owns</u> key DOFs: small re-mapping, incremental placement, device-level layout resynthesis
 - is hierarchical, scalable, incremental, controllable, wellcharacterized (well-modeled), detunable (e.g., coarse/quick routing), ...

Out-of-Box Uses of Routing Results

Modify floorplan

- floorplan compaction, pin assignments derived from top-level route planning
- Determine synthesis constraints
 - budgets for intra-block delay, block input/output boundary conditions
- Modify netlist
 - driver sizing, repeater insertion, buffer clustering
- Placement directives for block layout
 - over-block route planning affects utilization factors within blocks
- Performance-driven routing directives
 - wire tapering/spacing/shielding choices, assumed layer assignments, etc.

Routing Directions

- Cost functions and constraints
 - rich vocabulary, powerful mechanisms to capture, translate, enforce
- Degrees of freedom
 - wire widths/spacings, shielding/interleaving, driver/repeater sizing
 - router empowered to perform small logic resyntheses
- "Methodology"
 - carefully delineated scopes of router application
 - instance complexities remain tractable due to hierarchy and restrictions (e.g., layer assignment rules) that are part of the methodology
- Change in search mechanisms
 - iterative ripup/reroute replaced by "atomic topology synthesis utilities": construct entire topologies to satisfy constraints in arbitrary contexts
- Closer alignment with full-/automated-custom view
 - "peephole optimizations" of layout are the natural extensions of Motorola CELLERITY, IBM CM5, etc. methodologies

Noise Sources

- Analog design concerns are due physical noise sources
 - because of discreteness of electronic charge and stochastic nature of electronic transport processes
 - example: thermal noise, flicker noise, shot noise
- Digital circuits due to large, abrupt voltage swings, create deterministic noise which is several orders of magnitude higher than stochastic physical noise
 - still digital circuits are prevalent because hey are inherently immune to noise
- Technology scaling and performance demands made noisiness of digital circuits a big problem