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I. Introduction 
Coupled inductors are used in a variety of applications for their voltage conversion, impedance conversion, 
and/or electrical isolation properties.  The behavior of these components is dictated both by the coil 
inductances themselves and the coupling between them. 

In this experiment, we will investigate both a tightly coupled transformer and a pair of loosely coupled 
coils. 

The goals of this experiment are 

 Measuring the circuit behavior of transformers and coupled inductors 
 Establishing circuit voltage and current measurement techniques 
 Investigating the impact of external elements on magnetic fields 
 Characterizing coils that will be used in later experiment(s) 

II. Background 
a. Coupled Inductors  

An example inductive coil is shown in Figure 1.  The coil has 35mm diameter and 3mm height; it consists 
of 27 turns of wire above a high permeability magnetic material.  The magnetic material (the dark grey disc 
in Figure 1) acts as a near short-circuit for the magnetic field which shields area below the coil from 
magnetic field and increases the inductance of the coil. 

 

Figure 1.  Abracon AWCCA-RX350300-101 WPT coil 

An example finite element analysis (FEA) simulation of a single coil is shown in Figure 2.  FEA simulations 
are beyond the scope of this course, but provide a numerical simulation of the geometry by dividing the 
space into small triangles (elements) and solving Maxwell’s equations at the boundary of each.  The 
diagram in Figure 2 has about 15,000 elements.   

The diagram in Figure 2 is a 2D slice of the coil in Figure 1; the coil is cut through its diameter and viewed 
in the r-z plane of a cylindrical space.  The black contours are flux lines of the magnetic field produced by 
the coil when current flows through the winding.  The colored contours show the flux density, B, in units 
of Tesla, which is a measure of magnetic flux per unit area, 1T = 1Wb/m2. 
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Figure 2. Finite element simulation of the magnetic field of a single WPT coil 

In free space, this coil behaves as an inductor.  When current i1(t) flows through the coil, it produces a flux 

 Φଵሺ𝑡ሻ ൌ 𝛼ଵଵ𝑁ଵ𝑖ଵሺ𝑡ሻ (1) 

where k11 is a constant determined by the geometry of the coil and N1 is the number of turns in the coil.  The 
direction of the flux is in accordance with the right-hand rule.  All of the flux Φ1(t) flows through the coil.  
By Farady’s Law of Induction, if this flux is time varying, it will produce a voltage at the terminals of the 
coil 

 |𝑣ଵሺ𝑡ሻ| ൌ 𝑁ଵ
ௗ஍భሺ௧ሻ

ௗ௧
  (2) 

The polarity of v1(t) is given by Lentz’s Law, and is in the direction that would oppose the flux Φ1(t) if 
allowed to generate current through some resistor.  Combining (1) and (2) to eliminate Φ1(t),  

 𝑣ଵሺ𝑡ሻ ൌ 𝛼ଵଵ𝑁ଵ
ଶ ௗ௜భሺ௧ሻ

ௗ௧
  (3) 

or, in more familiar terms 

 𝑣ଵሺ𝑡ሻ ൌ 𝐿ଵ
ௗ௜భሺ௧ሻ

ௗ௧
  (4) 

where L1 = α11N1
2

 is the coil inductance.  Thus, this coil is modeled by the schematic of Figure 3.  

 

Figure 3. Schematic diagram of a single inductor 

A diagram of the magnetic field of a pair of these coils in close proximity is shown in Figure 4.  The diagram 
shows a 2D slice, of two vertically-aligned coils, through the center of each coil. The two coils have 35mm 
diameter, and are separated by 9mm.  Many of the flux lines in Figure 4 enclose (at least in portion) both 
coils.  This indicates that the two inductors are coupled: flux produced by current through one coil will 
result in a time-varying dΦ/dt in the other coil, thereby inducing a voltage on the second coil. 
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Figure 4. Finite element simulation of the magnetic field of two WPT coils with a distance of 9mm 
between them. 

Using the same procedure as in (1)-(4), this pair of coils exhibits terminal characteristics 

 
𝑣ଵሺ𝑡ሻ ൌ 𝛼ଵଵ𝑁ଵ

ଶ ௗ௜భ
ௗ௧
േ 𝛼ଵଶ𝑁ଵ𝑁ଶ

ௗ௜మ
ௗ௧

𝑣ଶሺ𝑡ሻ ൌ േ𝛼ଶଵ𝑁ଶ𝑁ଵ
ௗ௜భ
ௗ௧
൅ 𝛼ଶଶ𝑁ଶ

ଶ ௗ௜మ
ௗ௧

 (5) 

where αij is the geometrical constant modeling how much flux generated from coil i impinges on windings 
of coil j.  In general, this relationship is symmetric, αij = αji, so (5) can be written 

 
𝑣ଵሺ𝑡ሻ ൌ 𝐿ଵ

ௗ௜భ
ௗ௧
േ 𝑀

ௗ௜మ
ௗ௧

𝑣ଶሺ𝑡ሻ ൌ േ𝑀
ௗ௜భ
ௗ௧
൅ 𝐿ଶ

ௗ௜మ
ௗ௧

 (6) 

where L1 and L2 are the self-inductances of each coil; that is, the inductance that you would measure at the 
terminals of one coil with the other coil open-circuited.  The term M is the mutual inductance, which models 
the effect of the flux from one coil on the other coil.  The “±” operator is dictated by the relative winding 
direction of each coil, which is denoted in the symbol of Figure 5 by the dot convention.  Positive currents 
flowing into the dotted terminals always produces additive flux (and therefore voltage) on each winding.  
If one reference current is flowing into the non-dotted terminal, then positive currents will produce 
subtractive flux and voltages.   

 

Figure 5. Schematic of two coupled inductors  

The coupling coefficient of a pair of inductors is 

 𝑘 ൌ
ெ

ඥ௅భ௅మ
 (7) 

which is a value in the range 0 ≤ k ≤ 1.  The coupling coefficient models how tightly coupled the two 
inductors are: k = 0 indicates that there is no coupling and the two inductors are completely independent, 
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while k = 1 indicates perfect coupling.  In the latter case, (7) indicates that there is a maximum value of 
mutual inductance M that can be achieved.  When all flux generated by current in one coil induces voltage 

in the other, k = 1 and 𝑀 ൌ ඥ𝐿ଵ𝐿ଶ. 

Individual inductors, such as those that make up WPT coils, are often characterized by their quality factor, 
Q.  Quality factor is defined at a specified frequency f, as  

 𝑄 ൌ
ఠ௅

ோ
 (8) 

where R is the parasitic series resistance of the (non-ideal) inductor.  Higher quality factor inductors lose a 
smaller percentage of their energy to heat per period of sinusoidal current flowing through them.  When 
used in WPT applications, it is critical to operate with high quality factor to prevent the coils from 
overheating.  One way to do this is to increase the operating frequency, which increases the numerator in 
(8).  However, for reasons explained in latter courses, the resistance R increases with frequency.  At high 
enough frequency, this increase is quite rapid, and outpaces the increase in the numerator of (9), establishing 
a limited range over which increased frequency can benefit Q.  In this lab, we will be working at low power 
levels, such that heating and field strength are not a concern.  However, the main limitation for current 
commercial wireless phone chargers is the low power levels necessary to prevent the onboard coils from 
overheating. 

The changing Q with frequency is also one (of many) reasons why it is desirable to operate WPT systems 
with single-frequency, sinusoidal currents and voltages.  If the system operates at a single frequency, it can 
be tuned to operate with high efficiency.  If nonsinusoidal waveforms are present, the coils may exhibit a 
suboptimal Q-factor.   

b. Ideal Transformer 
An ideal transformer is a circuit element that approximates the behavior of two (or more) tightly coupled 
coils.  Most commonly, this is achieved by using high-permeability magnetic material to “guide” the flux 
between two coils.  An example is given in Fig. 6, where two windings share a magnetic “E” core.  In the 
simulated fields of Fig. 6(b), a small air gap is included in the outer arms.  Note that the flux is 
predominately contained within he magnetic material but “fringes” out at the air gaps.  Regardless, nearly 
all flux loops flow through the center leg of the core, and therefore all flux from one coil flows through the 
other generating a coupling coefficient close to unity. 

  
 (a) (b) 

Figure 6. Transformer (a) and cross-section of solved fields 
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Taking a coupling coefficient k=1 in (7) and plugging into (6),  

 
𝑣ଵሺ𝑡ሻ ൌ 𝐿ଵ

ௗ௜భ
ௗ௧
േ ඥ𝐿ଵ𝐿ଶ

ௗ௜మ
ௗ௧

𝑣ଶሺ𝑡ሻ ൌ േඥ𝐿ଵ𝐿ଶ
ௗ௜భ
ௗ௧
൅ 𝐿ଶ

ௗ௜మ
ௗ௧

 (9) 

which is of the form 

 𝑣ଵሺ𝑡ሻ ൌ േට
௅భ
௅మ
𝑣ଶሺ𝑡ሻ  (10) 

Replacing inductances with geometric parameters from (3), this relationship is 

 𝑣ଵሺ𝑡ሻ ൌ േට
ఈభభሺேభሻమ

ఈమమሺேమሻమ  
𝑣ଶሺ𝑡ሻ  (11) 

For perfect coupling, k=1, the two coils must be virtually identical such that all flux from one winding flows 
through all turns of the other.  For this to be the case, the geometric parameters must be α11 = α22.  Then, 
(11) simplifies to  

 𝑣ଵሺ𝑡ሻ ൌ േ
ேభ
ேమ  

𝑣ଶሺ𝑡ሻ  (12) 

Like previously, the “±” operator is dictated by the relative winding direction of each coil.  In a schematic, 
the polarity is again defined by the dot notation, as shown in the ideal transformer symbol of Fig. 7.   

 

Figure 7. Schematic of an ideal transformer  

A transformer is merely a special case of coupled inductors, but its behavior still conforms to (9).  If, 
however, we make an additional approximation that the inductances L1 and L2 are very large such that we 
can approximate both as infinite, we can additionally state that there is no internal energy storage.  This is 
because an infinite inductance would require infinite voltage to induce a non-zero current.  If this is true, 
then because there is no energy storage the instantaneous power in each winding must be balanced, 

 𝑣ଵሺ𝑡ሻ𝑖ଵሺ𝑡ሻ ൅ 𝑣ଶሺ𝑡ሻ𝑖ଶሺ𝑡ሻ ൌ 0  (13) 

Then, combining (13) and (12), 

 േ𝑁ଵ𝑖ଵሺ𝑡ሻ ൅ 𝑁ଶ𝑖ଶሺ𝑡ሻ ൌ 0  (14) 

As long as both currents are defined the same with respect to the dotted terminals (i.e. either both into or 
both out-of the dotted terminal) the “+” sign is used, and the defining equation for the ideal transformer are  
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௩భሺ௧ሻ

୒భ
ൌ

௩మሺ௧ሻ

୒మ
 

𝑁ଵ𝑖ଵሺ𝑡ሻ ൅ 𝑁ଶ𝑖ଶሺ𝑡ሻ ൌ 0 
 (15) 

both the winding currents and voltages are simply scaled versions of one another with a ratio determined 
by the number of turns in each winding.  The behavior of the ideal transformer is then entirely defined by 
these two equations; the pair of equations in (6) is no longer needed. 

III. Prelab Exercises 
Complete the following exercises prior starting the lab.  In this prelab, you will complete calculations and 
simulations to design related to a pair of coupled coils driven by a function generator, as will be tested in 
the lab. We will assume that the power source for our system is modeled by a sinusoidal Thévenin source 
with 2 V amplitude and 50 Ω Thévenin resistance. 

PE1 Prelab Exercise 1: Source Impedance Impact 

Consider the circuit of Fig. 8.  The source and resistor inside the grey, dashed box represent the circuit 
model of a function generator.  Coil L2 is open-circuited. 

 

Figure 8. Schematic of a function generator supplying a pair of coupled coils 

Solve for a differential equation relating i(t) and va(t).  Assume that i(t)=IAcos(ωt+φ) with ω=2πf.  Find the 
value of v1(t) if  

a. ωL ≫ 50 Ω 
b. ωL ≪ 50 Ω 

If L1 and L2 are identical coils, find v2(t) as a function of the source voltage and coupling coefficient (only) 
for the two cases above. 

PE2 Prelab Exercise 2: LTSpice Simulation 

Using LTspice, simulate the circuit of Fig. 8 with the values given in Table I.   

Table I: Starting Values for Simulation 

f VA k L1
 L2 

50 kHz 2 V 0.5 100 μH 100 μH 

 

Include a plot of v1(t) and v2(t) over two periods after the circuit has reached steady-state 
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PE3 Prelab Exercise 3: LTSpice Simulation Sweep 

Simulate the circuit from PE2 for k = [0.25, 0.5, 0.75, 1] and f = [1 kHz, 50 kHz, 1 MHz] (12 total points).   

In each case, record the amplitude of v1(t) and v2(t).  In MatLab, create a plot of each signal where the x-
axis is frequency, the y-axis is voltage amplitude, and there are four curves corresponding to each value of 
k.  Use semilogx() instead of plot() so that all three frequencies are visible. 

Comment on your results.  Do these plots match your results predicted in PE1? 

 

IV. Laboratory Experiment 
In this experiment, we will be testing both a 3-winding transformer and a pair of WPT coils, both of which 
are shown in Fig. 9 

   
 (a) (b) 

Figure 9. Transformer (a) and coupled coils (b) from parts kit 

 

LE1 Lab Exercise 1: Transformer Turns Ratio 

Your lab kit contains a PC-34-125 transformer.  This transformer is rated for 50-500 Hz.  Note the winding 
connections of the transformer as given in the datasheet and repeated in Fig. 10.  The dot on the top of the 
transformer (labeled P1) indicates the location of pin 1.   

 

Figure 10. Transformer winding connections from PC-34-125 datasheet. 

The transformer has three windings including a primary (pins 1-2) and two identical secondaries (pins 3-4 
and 5-6).   
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Configure the function generator output to a 2V amplitude, 500 Hz sinusoid.  Connect the output of the 
function generator to the primary winding.  Using both oscilloscope channels, measure the primary winding 
voltage, and one of the secondary winding voltages.  Using the measurement function of the oscilloscope, 
measure the amplitude of both signals.  

Assuming the transformer behaves as an ideal transformer, the ratio of these amplitudes is determined by 
the turns ratio.  From your measurement, compute the turns ratio, and express it 1:N, with N ≥ 1.  Repeat 
your test until you have a turns ratio for all three windings, and give the overall turns ratio as 1:N1:N2 with 
N1 ≥ 1 and N2 ≥ 1.  In your report, draw the schematic symbol of this transformer with the turns labeled on 
each winding. 

LE2 Lab Exercise 2: Transformer Inductances 

An ideal transformer has infinite inductances, but a real component will always have finite values for all 
inductances.  In this exercise you’ll measure the actual winding and mutual inductances of the transformer. 
For simplicity, in this exercise and all remaining exercises, you can ignore the third winding (pins 5&6) 
and treat the component as a two-winding transformer.   

In order to measure the impedances (resistance, inductance, and/or capacitance) we can simultaneously 
measure the voltage and current on an element, then use the elementary equations to solve the impedance. 
In this experiment, we’ll use the following circuit for this purpose 

ோೞ

Figure 11. Circuit for impedance measurement 

DUT stands for Device Under Test, which is the component that we are measuring.  The dashed box gives 
an equivalent model of the function generator in sinusoidal mode. Note that you can set VA and f, but the 
50 Ω resistor cannot be altered or removed and is internal to the function generator itself.  In this circuit, 
the function generator output v1(t) is applied across the series connection of the DUT and a sensing resistor 
Rs which is a known value.  The sensing resistor allows measurement of current by noting that v2(t) = i(t)Rs.  
Measuring v1(t) and v2(t) with the oscilloscope, the voltage and current of the DUT are then 

𝑣ୈ୙୘ሺ𝑡ሻ ൌ 𝑣1ሺ𝑡ሻ െ 𝑣ଶሺ𝑡ሻ  

𝑖ୈ୙୘ሺ𝑡ሻ ൌ ଵ 
𝑣ଶሺ𝑡ሻ

Again using a 2V amplitude, 500 Hz sinusoid from the function generator and Rs = 1kΩ construct the circuit 
of Fig. 11 with the DUT being the primary winding of the transformer.  Measure and compute the winding 
voltage and current, then compute the inductance of the winding based on these measurements.  Do the 
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same for the secondary winding.  Include the measured voltages, currents, and inductances for both cases 
in your report. 

Next, connect both the primary and secondary windings in series and measure/compute the inductance.  
Finally, flip one of the windings from the prior measurement (i.e. reverse the connection of the pins) so that 
the windings are still in series but a flux addition that is opposite what it was previously.  Measure/compute 
the inductance in this.  Use these two measured series inductances to compute the mutual inductance of the 
two windings.  Report your measurements, computed mutual inductance M, and the value of the winding 
coupling coefficient k in your lab report. Comment on the value of k and whether it matches your prediction 
for this component. 

Hint: using the equation for mutual inductance when neither of the ideal transformer 
assumptions are applied, write the equation for the total voltage when they are 
connected in either series or anti-series and compare. 

LE3 Lab Exercise 3: Transformer Reflection 

Take the 1μF capacitor from your parts kit (yellow, with print “105” on the disc).  Using the circuit of 
Fig. 11 with this capacitor as the DUT, measure/compute the capacitance of this component.   

Next, using the same measurement circuit, instead connect the capacitor through the transformer as shown 
in Fig. 12.  Test both when the primary is connected to the capacitor and when the secondary is connected 
to it.  In each case, measure the capacitance seen from the winding on the left.   

 

Figure 12. Impedance measurement with transformer scaling 

Report all three measured capacitance, and compare them to your expectations given the results of LE1. 

LE4 Lab Exercise 4: Air Core Coil Coupling 

The remaining exercises will use the air core coils in the ECE 202 supplement kit.  These coils come as a 
single printed circuit board (PCB) containing two identical coils and a mechanical stand that fixes the 
distance and alignment between them.  See Fig. 13.  Break apart the coils and holder and assemble them as 
shown in Fig. 13(b).  Note that the coil holder is asymmetric; use it with the longer legs upwards in this 
experiment, as shown in the photograph. 

Note: If you have access to electrical tape, you can tape this whole structure together.  
Do not use tapes with conductive material or with strong adhesive, though, as we’ll be 
using the other stand arrangement in future experiments. 
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 (a) (b) 

Figure 13. Coil printed circuit board (a) and assembled coils with holder (b) 

Apply a 2V sinusoidal 500 kHz (note kilohertz in this and future tests) signal from the function generator 
to one coil and measure the voltage on both coils.  Knowing that the two coils are identical, compute the 
coupling coefficient from this measurement, alone. 

LE5 Lab Exercise 5: Air Core Inductances 

Using a similar procedure to that in LE2, measure the inductance of each coil and the mutual inductance of 
the pair.  Keep the source at 500 kHz, and use a resistor Rs of 20 Ω instead of the 1 kΩ used previously.  
Compare the coupling coefficient from these measurements to the value found in LE4.   

Additionally, compare the coupling coefficient of these coils to that of the transformer in LE2.  Comment 
on why you think they are different, given the physical construction of the two. 

LE6 Lab Exercise 6: Magnetic shielding 

Magnetic fields flow more easily though materials with high permeability μ but are blocked by materials 
with high conductivity.  Connect the coils as in LE4, with the function generator on one coil and both coil 
voltages measured by the oscilloscope.  Make sure that the coil connected to the function generator is on 
top.  Again note the ratio of the voltages and the coupling coefficient.   

Next, place the transformer from LE1-LE3, upside-down, on top of the top coil.  This should place its 
magnetic core directly in contact with the top coil.  Measure the voltages and the coupling coefficient in 
this setup. 

Remove the transformer, and replace it with a sheet of metal.  You can use aluminum foil, a coin, a foil-
lined gum wrapper, a metal cup or can, or any continuous sheet of conductive material that covers the top 
coil.  Take a picture of your coils with this metal on top, and submit it along with your measurements of 
voltages and the coupling coefficient in this setup. 

Finally, remove the conductor and place your finger on top of the coil.  Measure the voltages and the 
coupling coefficient in this setup. 
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In your lab report, comment on the difference between k values in the base setup, magnetic material, 
conductor, and finger measurements.  Explain how any why these measurements differ (or don’t). 

V. Conclusions 
In your report, make sure to include the results of all measurements and calculations requested in the lab.  
Whenever the exercise asks for a “comparison”, the comparison should be discussed explicitly in the report.  
When measurements are asked for, you should show the results of the measurements with oscilloscope 
waveforms (preferred) or tabular data. 


