PFE: Repeated Roots

Repeated Roots: Equating Coefficients

Repeated Roots: Differentiation

Complex Roots: Complex Math

Complex Roots: General Case

	Operation	f(t)	F(s)		TABLE 14.1 Laplace Transform Pairs		
	Addition	$f_1(t) \pm f_2(t)$	$\mathbf{F}_1(s) \pm \mathbf{F}_2(s)$		$f(t) = \mathcal{L}^{-1} \left\{ \mathbf{F}(\mathbf{s}) \right\}$	$\mathbf{F}(\mathbf{s}) = \mathcal{L}\left\{f\left(t\right)\right\}$	
Laplace Transform Operations	Scalar multiplication	kf(t)	$k\mathbf{F}(\mathbf{s})$		$\mathcal{S}(t)$	1	
	Time differentiation	$\frac{df}{dt}$	$\mathbf{sF}(\mathbf{s}) - f(0^-)$		u(t)	$\frac{1}{s}$	
		$\frac{d^2f}{dt^2}$	$s^2 \mathbf{F}(s) - s f(0^-) - f'(0^-)$		tu(t)	$\frac{1}{\mathbf{s}^2}$	
		$\frac{d^3f}{dt^3}$	$s^3F(s) - s^2f(0^-) - sf'(0^-) - f''(0^-)$		$\frac{t^{n-1}}{(n-1)!}u(t), n = 1, 2,$	$\frac{1}{\mathbf{s}^n}$	
	Time integration	$\int_{0^{-}}^{t} f(t) dt$	$\frac{1}{s}\mathbf{F}(\mathbf{s})$	$e^{-\alpha i}$	$e^{-\alpha t}u(t)$	$\frac{1}{s + \alpha}$	
		$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{s}F(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} f(t) dt$		$te^{-\alpha t}u(t)$	$\frac{1}{(s + \alpha)^2}$	
	Convolution	$f_1(t) * f_2(t)$	$\mathbf{F}_1(\mathbf{s})\mathbf{F}_2(\mathbf{s})$		$\frac{t^{n-1}}{(n-1)!}e^{-ct}u(t), n = 1,2,$	$\frac{1}{(\mathbf{s} + \alpha)^n}$	
TABLE 14.2	Time shift	$f(t-a)u(t-a), a \ge 0$	$e^{-as}\mathbf{F}(\mathbf{s})$		$\frac{1}{\beta - \alpha} (e^{-\alpha t} - e^{-\beta t}) u(t)$	1	
	Frequency shift	$f(t)e^{-at}$	$\mathbf{F}(\mathbf{s} + \mathbf{a})$		$p - \alpha$ $\sin \omega t u(t)$ $\cos \omega t u(t)$ $\sin (\omega t + \theta) u(t)$	$\frac{(\mathbf{s} + \alpha)(\mathbf{s} + \beta)}{\omega}$	
	Frequency differentiation	tf(t)	$-\frac{d\mathbf{F}(\mathbf{s})}{d\mathbf{s}}$			$s^2 + \omega^2$	
		f(t)				$\frac{s}{s^2 + \omega^2}$	
	Frequency integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} \mathbf{F}(\mathbf{s}) d\mathbf{s}$			$\frac{\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$	
	Scaling	$f(at), a \ge 0$	$\frac{1}{a}\mathbf{F}\left(\frac{\mathbf{s}}{a}\right)$		$\cos\left(\omega t + \theta\right) u(t)$	$\frac{\mathbf{s}\cos\theta - \omega\sin\theta}{\mathbf{s}^2 + \omega^2}$	
	Initial value	$f(0^+)$	$\lim_{s \to \infty} sF(s)$		$e^{-\alpha t}\sin \omega t u(t)$	ω	
	Final value	$f(\infty)$	$\underset{s\rightarrow 0}{lim}sF\left(s\right) ,$ all poles of $sF(s)$ in LHP			$(s + \alpha)^2 + \omega^2$	
	Time periodicity	f(t) = f(t + nT),	$\frac{1}{1-e^{-T_s}}\mathbf{F}_1(\mathbf{s}),$		$e^{-\alpha t}\cos\omega t\ u(t)$	$\frac{\mathbf{s} + \alpha}{(\mathbf{s} + \alpha)^2 + \omega^2}$	
		$n = 1, 2, \dots$	$1 - e^{-ts}$ where $\mathbf{F}_{1}(\mathbf{s}) = \int_{0^{-}}^{T} f(t) e^{-\mathbf{s}t} dt$				
			$\int_{0^{-}}$				

Complex Roots: Table Lookup