CHAPTER 10: SINUSOIDAL STEADY-STATE

Motivation

want to be able to analyze mare complex circuits wfout complex $\frac{1}{3}$ evror-prone diff eds arolusis $\$$ algelorn

Sinussidal \rightarrow Good model for eng. applications in PF, Payer systems. ciscilbiters, certain power conversion
Later: extend to rou-simusoidal sources
cteady-state \rightarrow Igrave, initially any transient dynamics
later: extend to transient dynamics

Motivation

Numerical Analytical
Time Domain
Frequency Domain

Motivation

Numerical
Analytical
Time Domain
Frequency Domain

$$
\left\{\begin{array}{c}
\frac{d A}{d t}=\beta_{A} \cdot \frac{D^{n}}{K_{D A}^{n}+D^{n}} \cdot\left(1-\frac{C^{n}}{K_{C A}^{n}+C^{n}}\right)-\alpha_{A} \cdot A \\
\frac{d X}{d t}=\beta_{X} \cdot \frac{A^{n}}{K_{A X}^{n}+A^{n}}-\alpha_{X} \cdot X \\
\frac{d C}{d t}=\beta_{C} \cdot \frac{(A+X)^{n}}{K_{A X C}^{n}+(A+X)^{n}}-\alpha_{C} \cdot C \\
\frac{d B}{d t}=\beta_{B} \cdot \frac{C^{n}}{K_{C B}^{n}+C^{n}} \cdot\left(1-\frac{D^{n}}{K_{D B}^{n}+D^{n}}\right)-\alpha_{B} \cdot B \\
\frac{d Y}{d t}=\beta_{Y} \cdot \frac{B^{n}}{K_{B Y}^{n}+B^{n}}-\alpha_{Y} \cdot Y \\
\frac{d D}{d t}=\beta_{D} \cdot \frac{B+Y)^{n}}{K_{B Y D}^{n}+(B+Y)^{n}}-\alpha_{D} \cdot D
\end{array}\right\}
$$

Motivation

Form of the Solution
$N^{\text {th }}$ order circuit with sinusoidal input described by

$$
\begin{aligned}
& v_{N} \frac{d^{N}}{d t^{N}} v_{o}(t)+\cdots+b_{1} \frac{d}{d t} v_{o}(t)+b_{0} v_{o}(t)=a_{M} \frac{d^{M}}{d t^{M}} v_{i}(t)+\cdots+a_{1} \frac{d}{d t} v_{i}(t)+a_{0} v_{i}(t)
\end{aligned}
$$

$$
\sum_{i=0}^{N} b_{i} \frac{d^{i}}{d t^{i}} v_{o}(t)=\sum_{i=0}^{M} a_{i} \frac{d^{i}}{d t^{i}} v_{i}(t)
$$

solution for $v_{0}(t)$ will be of the form

$$
v_{o}(t)=v_{o, h}(t)+v_{o, p}(t)
$$

Transient Response

$v_{o, h}(t)$ is the homogeneous solution to the differential equation, the natural response of the system, or the transient response of the system. For any non-ideal (damped) circuit, $v_{o, h}(t)$ will tend to zero over time
$v_{o, h}(t)$ is the solution to the equation

$$
\sum_{i=0}^{N} b_{i} \frac{d^{i}}{d t^{i}} v_{o, h}(t)=0
$$

which will be of the form

$$
v_{o, h}(t)=\sum_{i=0}^{N} A_{i} e^{s_{i} t} \quad \begin{aligned}
& s_{i} \rightarrow \text { roots of characteristic polynomial } \\
& A_{i} \rightarrow \text { determined by initial conditions }
\end{aligned}
$$

Note: some of the time constants $\left(s_{i}\right)$ of a circuit are independent of the input

Steady-State Response

$v_{o, p}(t)$ is the particular solution to the differential equation, the forced response of the system, or the steady-state response of the system. In general, it does not tend to zero, if non-zero inputs are present.
$v_{o, p}(t)$ is the non-zeroing solution to the equation

$$
\sum_{i=0}^{N} b_{i} \frac{d^{i}}{d t^{i}} v_{o}(t)=\sum_{i=0}^{M} a_{i} \frac{d^{i}}{d t^{i}} v_{i}(t)
$$

LTI Systems

For a function $f(\cdot)$

Linearity

then:

$$
a v_{o, 1}(t)+b v_{o, 2}(t)=f\left(a v_{i, 1}(t)+b v_{i, 2}(t)\right)
$$

Time Invariance

$$
\begin{array}{cl}
\text { if: } & v_{o}(t)=f\left(v_{i}(t)\right) \\
\text { then: } & v_{o}(t-T)=f\left(v_{i}(t-T)\right)
\end{array}
$$

LTI: $\quad v_{x}(t)+v_{y}(t), \quad \alpha v_{x}(t), \quad \frac{d v_{x}(t)}{d t}, \quad \int_{0}^{t} v_{x}(t) d t \quad$ (neglecting ICs)
Not LTI: $v_{x}(t) \cdot v_{y}(t), v_{x}(t)^{2},\left|v_{x}(t)\right| \longrightarrow$ power inñt a linear calculatien

Causality

- Causal systems cannot predict the future
- $v_{o}\left(t_{0}\right)$ does not depend on values of $v_{i}(t), \mathrm{t}>t_{0}$

$$
\begin{array}{cl}
v_{o, 1}(t)= & f\left(v_{i, 1}(t)\right) \quad v_{o, 2}(t)=f\left(v_{i, 2}(t)\right) \\
\text { if: } & v_{i, 1}(t)=v_{i, 2}(t) \quad \forall t<t_{0} \\
\text { then: } & v_{o, 1}(t)=v_{o, 2}(t) \quad \forall \quad t<t_{0}
\end{array}
$$

Preview of Frequency Domain fer LTI sytems
ch 10

- Develop "phaser aralysis" \rightarrow for sinusoidal imputs $\$$ steady state ony
- we krew superpostion applies
(1) make it very casu to sotve circusts with \sin usoidal inputs

Remainder of couse
(1) Make it Find a woy to express any arbitrony input as a sum of (2) Find a woy (varying trequeren \& amplitude)

$\begin{array}{r}\text { steody- } \\ \text { state }\end{array} \sum_{i=0}^{N} b_{i} \frac{d^{i}}{d t^{i}} v_{o}(t)=\sum_{i=0}^{M} a_{i} \frac{d^{i}}{d t^{i}} v_{i}(t)$
Let's guess $V_{0}(t)=v_{i}(t)=V_{I} \cos (\omega t) \longrightarrow$ if inpults are sinusoids @ ω

$$
\begin{aligned}
& \frac{d}{d t} v_{0}(t)= v_{0}^{\prime}(t) \\
&=-A \omega \sin (\omega t+\varphi) \\
& v_{0}^{\prime \prime}(t)=-A \omega^{2} \cos (\omega t+\varphi) \\
& v_{0}^{\prime \prime \prime}(t)=A \omega^{3} \sin (\omega t+\varphi) \\
& v_{0}^{\prime \prime \prime}(t)=A \omega^{4} \cos (\omega t+\varphi)
\end{aligned}
$$

