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Effect of nonidealities
on transformer volt-second balance

Volt-seconds applied to primary winding during first switching period:
( VX (0, and Q, forward voltage drops))( @, and O, conduction time)

Volt-seconds applied to primary winding during next switching period:
(V,—(Q,and Q, forward voltage drops))( O, and Q; conduction time)

These volt-seconds never add to exactly zero.

Net volt-seconds are applied to primary winding

Magnetizing current slowly increases in magnitude

Saturation can be prevented by placing a capacitor in series with
primary, or by use of current programmed mode (Chapter 12)
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Operation of secondary-side diodes
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During second (D')
subinterval, both
secondary-side diodes
conduct

Output filter inductor
current divides
approximately equally
between diodes

Secondary amp-turns add
to approximately zero

Essentially no net
magnetization of
transformer core by
secondary winding currents
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Volt-second balance on output filter inductor
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Half-bridge isolated buck converter
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* Replace transistors 0, and Q, with large capacitors
+ Voltage at capacitor centerpoint is 0.5 v,
+ v () is reduced by a factor of two
s M=05nD
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6.3.3. Push-pull isolated buck converter

V=nDV, 0=D=<]
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Waveforms: push-pull

inf)
= Used with low-voltage inputs
/J;,‘, ol 38 + Secondary-side circuit identical
wihy e o ¥ to full bridge
_| 0 o T = As in full bridge, transformer
| A volt-second balance is obtained
itn L over two switching periods

« Effect of nonidealities on
5 : transformer volt-second
v, | | a¥, | i balance?

Vi

_ | 2 | | o [ « Current programmed control
AU ST s : 051 r can be used to mitigate
— i o [ ; transformer saturation
or 1 70T 7 problems. Duty cycle control
<-,,,:}:_,:;;.,:f_‘.§ ::: , e : b, not recommended.
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6.3.2. Forward converter

* Buck-derived transformer-isolated converter
+ Single-transistor and two-transistor versions
* Maximum duty cycle is limited

= Transformer is reset while transistor is off
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Forward converter
with transformer equivalent circuit
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Forward converter: waveforms
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Subinterval 1: transistor conducts
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Subinterval 2: transformer reset
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Subinterval 3
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Magnetizing inductance volt-second balance
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(n)=D(Vv,)+ 1)3(_ Ve /na) + D5(0) = 0
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Transformer reset

From magnetizing current volt-second balance:
(m)=D(v,)+ Dz[— Vn .mg) +D4(0)=0

Solve for D,

14
DZ_E

D, cannot be negative. But D, = 1 - D - D,. Hence
Dy=1-D=-D,=0

1)3:I-D(I +”—1)zo

n,
Solve for D
D= ._i_m. forn =ny: p-1
1+—= 2
n
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What happens when D > 0.5

magnetizing current Il?)
waveforms, D <05
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Conversion ratio M(D)
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Maximum duty cycle vs. transistor voltage stress

Maximum duty cycle limited to

Ds—l

which can be increased by increasing the turns ratio n, / n,. But this
increases the peak transistor voltage:

n
max (vg, ) = V_L,(] + ﬁ}

Forn, =n,
1 T ST
DSE and max(vy,,) =2V,
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The two-transistor forward converter
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V=nDV, D<= % max(vg,) = max(vg,) =V,
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Chapter 5. The Discontinuous Conduction Mode

5.1. Origin of the discontinuous conduction mode, and
mode boundary

5.2. Analysis of the conversion ratio M(D,K)
5.3. Boost converter example

5.4. Summary of results and key points
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Introduction to

Discontinuous Conduction Mode (DCM)

« Occurs because switching ripple in inductor current or capacitor voltage
causes polarity of applied switch current or voltage to reverse, such
that the current- or voltage-unidirectional assumptions made in realizing

the switch are violated.

« Commonly occurs in dc-dc converters and rectifiers, having single-
quadrant switches. May also occur in converters having two-quadrant

switches.

« Typical example: dc-dc converter operating at light load (small load
current). Sometimes, dc-dc converters and rectifiers are purposely

designed to operate in DCM at all loads.

« Properties of converters change radically when DCM is entered:

M becomes load-dependent
Output impedance is increased
Dynamics are altered

Control of output voltage may be lost when load is removed
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5.1. Origin of the discontinuous conduction
mode, and mode boundary

Buck converter example, with single-quadrant switches
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Minimum diode current is (1 — Ai;)
Dc component [ = V/R
Current ripple is

. (V.-V) _ V.DDT,
Aiy=—5p—PL.=—"5p

Note that / depends on load, but Ai,
does not.
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Reduction of load current

Increase R, until I = Ai;

iyt

DK

inlth

Minimum diode current is (1 — Ai;)
Dc component /= V/R

Current ripple is

_(V,-v) T = V,DD'T,

T 2L 2L

Note that / depends on load, but Ai,
does not.

Ai,
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Further reduce load current

Increase R some more, such that I < A,

0, L

iyt

inlth

Minimum diode current is (1 - Ai;)
Dc component [ = V/R

Current ripple is

_(V,-V) __ V.DDT,

- 2L - 2L

Note that / depends on load, but Ai,
does not.

The load current continues to be
positive and non-zero.

A,
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Mode boundary

1> Ai, for CCM
I < Ai, for DCM

Insert buck converter expressions for / and A, :
DV, DDTV,
R ST

Simplify:
2L

R—T‘(D

This expression is of the form
K<K_ (D) for DCM

_ 2L _n
where K= RT and K_.(Dy=D

£
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Kand K, vs. D
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