Lecture 10: Isolated Converters II & DCM Introduction

ECE 481: Power Electronics Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

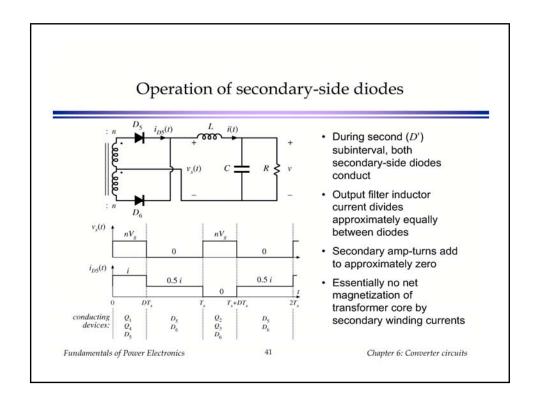
Effect of nonidealities on transformer volt-second balance

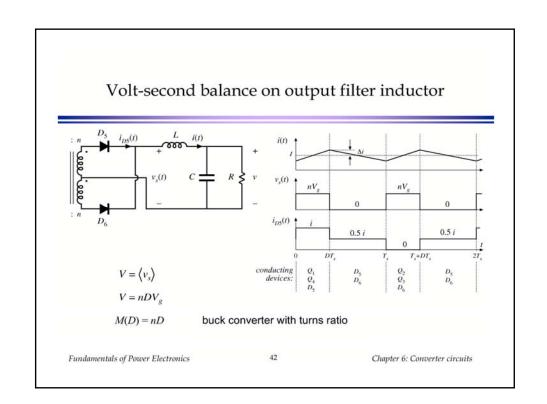
Volt-seconds applied to primary winding during first switching period:

 $(V_g - (Q_1 \text{ and } Q_4 \text{ forward voltage drops}))(Q_1 \text{ and } Q_4 \text{ conduction time})$

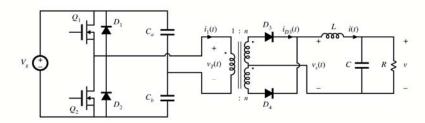
Volt-seconds applied to primary winding during next switching period:

 $-(V_g-(Q_2 \text{ and } Q_3 \text{ forward voltage drops)})(Q_2 \text{ and } Q_3 \text{ conduction time})$


These volt-seconds never add to exactly zero.

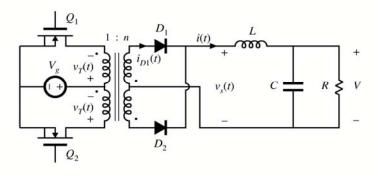

Net volt-seconds are applied to primary winding

Magnetizing current slowly increases in magnitude


Saturation can be prevented by placing a capacitor in series with primary, or by use of current programmed mode (Chapter 12)

Fundamentals of Power Electronics

Half-bridge isolated buck converter

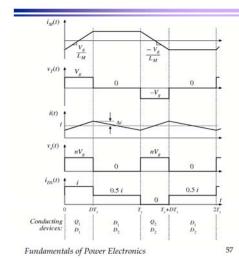

- Replace transistors \mathcal{Q}_3 and \mathcal{Q}_4 with large capacitors
- Voltage at capacitor centerpoint is $0.5V_{\rm g}$
- $v_s(t)$ is reduced by a factor of two
- $M = 0.5 \ nD$

Fundamentals of Power Electronics

4

Chapter 6: Converter circuits

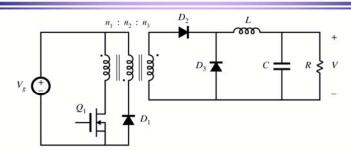
6.3.3. Push-pull isolated buck converter



 $V = nDV_{g} \qquad 0 \le D \le 1$

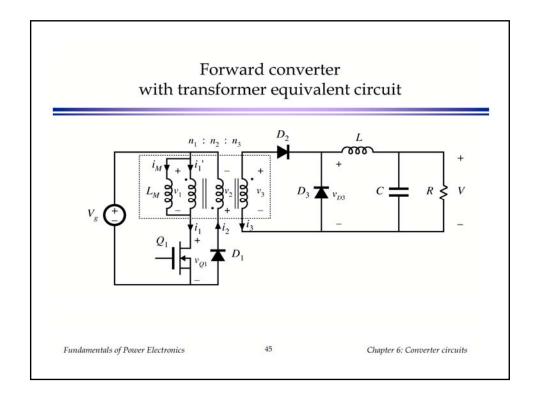
Fundamentals of Power Electronics

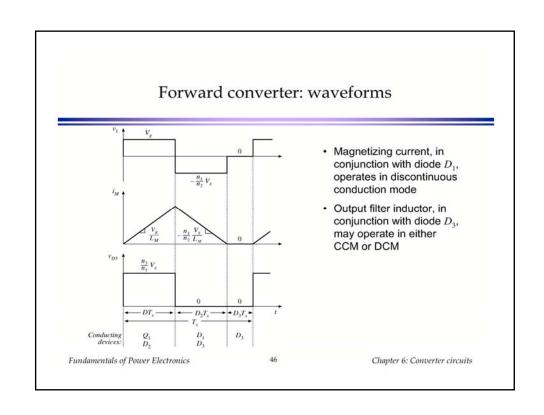
56

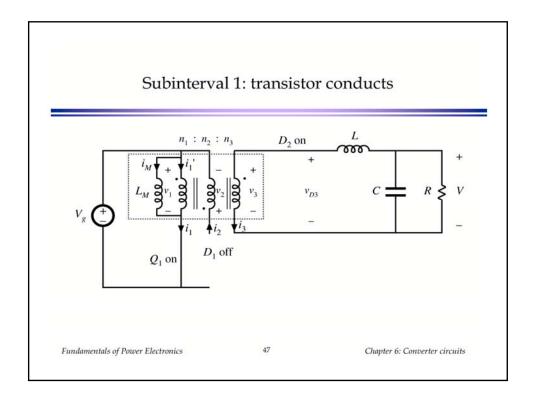

Waveforms: push-pull

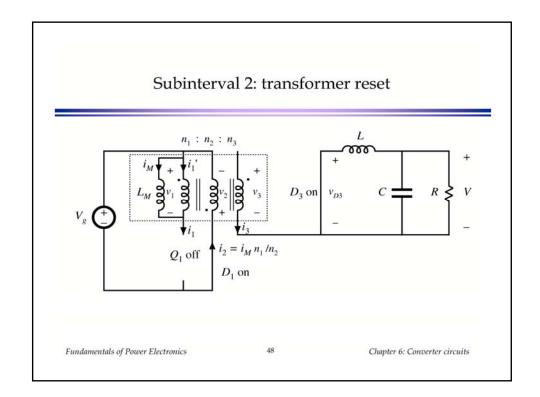
- · Used with low-voltage inputs
- Secondary-side circuit identical to full bridge
- As in full bridge, transformer volt-second balance is obtained over two switching periods
- Effect of nonidealities on transformer volt-second balance?
- Current programmed control can be used to mitigate transformer saturation problems. Duty cycle control not recommended.

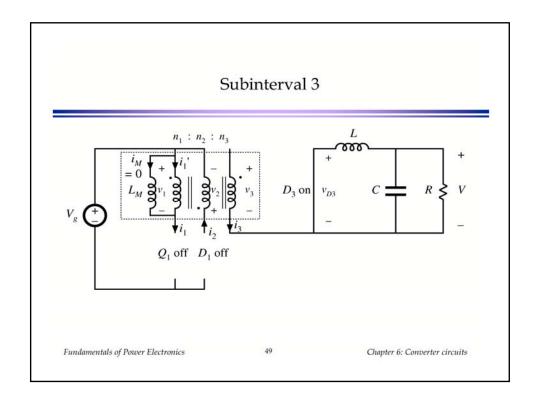
Chapter 6: Converter circuits

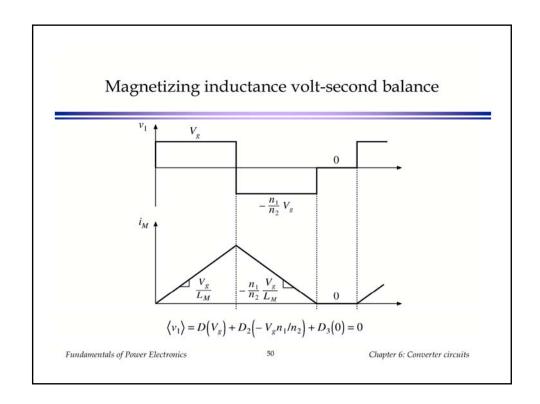

6.3.2. Forward converter




- · Buck-derived transformer-isolated converter
- · Single-transistor and two-transistor versions
- · Maximum duty cycle is limited
- · Transformer is reset while transistor is off


Fundamentals of Power Electronics


44



Transformer reset

From magnetizing current volt-second balance:

$$\left\langle v_1 \right\rangle = D \Big(V_g \Big) + D_2 \Big(- V_g n_1 / n_2 \Big) + D_3 \Big(0 \Big) = 0$$

Solve for
$$D_2$$
:

$$D_2 = \frac{n_2}{n_1} D$$

 D_3 cannot be negative. But $D_3 = 1 - D - D_2$. Hence

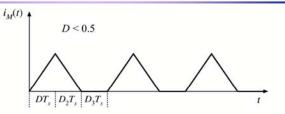
$$D_3=1-D-D_2\geq 0$$

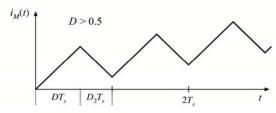
$$D_3 = 1 - D\left(1 + \frac{n_2}{n_1}\right) \ge 0$$

Solve for D

$$D \le \frac{1}{1 + \frac{n}{n}}$$

for
$$n_1 = n_2$$
: $D \le 1$

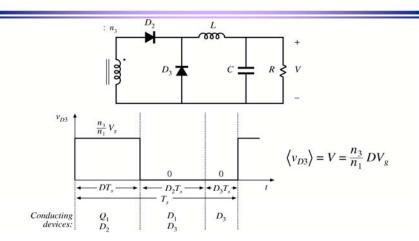

Fundamentals of Power Electronics


Chapter 6: Converter circuits

What happens when D > 0.5

magnetizing current waveforms,

for $n_1 = n_2$



Fundamentals of Power Electronics

52

Conversion ratio M(D)

Fundamentals of Power Electronics

53

Chapter 6: Converter circuits

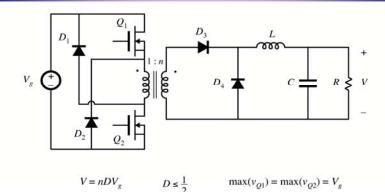
Maximum duty cycle vs. transistor voltage stress

Maximum duty cycle limited to

$$D \le \frac{1}{1 + \frac{n_2}{n_1}}$$

which can be increased by increasing the turns ratio $n_2 \, / \, n_J$. But this increases the peak transistor voltage:

$$\max\left(v_{Q1}\right) = V_g\left(1 + \frac{n_1}{n_2}\right)$$


For $n_1 = n_2$

$$D \le \frac{1}{2}$$
 and $\max(v_{Q1}) = 2V_g$

Fundamentals of Power Electronics

54

The two-transistor forward converter

Fundamentals of Power Electronics

55

Chapter 6: Converter circuits

Chapter 5. The Discontinuous Conduction Mode

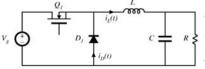
- 5.1. Origin of the discontinuous conduction mode, and mode boundary
- 5.2. Analysis of the conversion ratio M(D,K)
- 5.3. Boost converter example
- 5.4. Summary of results and key points

Fundamentals of Power Electronics

Chapter 5: Discontinuous conduction mode

Introduction to Discontinuous Conduction Mode (DCM)

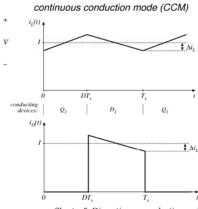
- Occurs because switching ripple in inductor current or capacitor voltage causes polarity of applied switch current or voltage to reverse, such that the current- or voltage-unidirectional assumptions made in realizing the switch are violated.
- Commonly occurs in dc-dc converters and rectifiers, having singlequadrant switches. May also occur in converters having two-quadrant switches
- Typical example: dc-dc converter operating at light load (small load current). Sometimes, dc-dc converters and rectifiers are purposely designed to operate in DCM at all loads.
- Properties of converters change radically when DCM is entered:
 - M becomes load-dependent
 - Output impedance is increased
 - Dynamics are altered
 - Control of output voltage may be lost when load is removed


Fundamentals of Power Electronics

2

Chapter 5: Discontinuous conduction mode

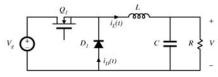
5.1. Origin of the discontinuous conduction mode, and mode boundary


Buck converter example, with single-quadrant switches

Minimum diode current is $(I - \Delta i_L)$ Dc component I = V/RCurrent ripple is

$$\Delta i_L = \frac{(V_g - V)}{2L} DT_s = \frac{V_g DD'T_s}{2L}$$

Note that I depends on load, but Δi_L does not.



 ${\it Chapter 5: Discontinuous conduction\ mode}$

Fundamentals of Power Electronics

Reduction of load current

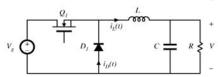
Increase R, until $I = \Delta i_L$

Minimum diode current is $(I-\Delta i_L)$ Dc component $I=V\!/\!R$ Current ripple is

$$\Delta i_L = \frac{(V_g - V)}{2L} DT_s = \frac{V_g DD'T_s}{2L}$$

Note that I depends on load, but $\varDelta i_L$ does not.

Fundamentals of Power Electronics


CCM-DCM boundary

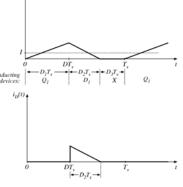
Chapter 5: Discontinuous conduction mode

Further reduce load current

Increase R some more, such that $I < \Delta i_L$

Minimum diode current is $(I - \Delta i_L)$ Dc component I = V/R

Current ripple is


$$\Delta i_L = \frac{(V_g - V)}{2L} DT_s = \frac{V_g DD'T_s}{2L}$$

Note that I depends on load, but $\varDelta i_L$ does not.

The load current continues to be positive and non-zero.

Fundamentals of Power Electronics

Discontinuous conduction mode

Chapter 5: Discontinuous conduction mode

Mode boundary

$$\begin{split} I > \Delta i_L & \ for \ CCM \\ I < \Delta i_L & \ for \ DCM \end{split}$$

Insert buck converter expressions for I and Δi_L :

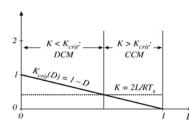
$$\frac{DV_s}{R} < \frac{DD'T_sV_s}{2L}$$

Simplify:

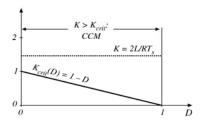
$$\frac{2L}{RT} < D'$$

This expression is of the form

$$K < K_{crit}(D) \qquad for \ DCM$$
 where
$$K = \frac{2L}{RT_s} \quad and \quad K_{crit}(D) = D'$$


Fundamentals of Power Electronics

.


Chapter 5: Discontinuous conduction mode

K and K_{crit} vs. D

for K < 1:

for K > 1:

Fundamentals of Power Electronics

7

Chapter 5: Discontinuous conduction mode