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Part II
Converter Dynamics and Control

AC equivalent circuit modeling
Converter transfer functions
Controller design

0. Input filter design

1

. AC and DC equivalent circuit modeling of the
Yo discontinuous conduction mode

L 12. Current programmed control




Chapter 7. AC Equivalent Circuit Modeling

7.1 Introduction
7.2 The basic AC modeling approach
7.3 State-space averaging

7.4 Circuit averaging and averaged switch modeling

7.5 The canonical circuit model
7.6 Modeling the pulse-width modulator
7.7 Summary of key points
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Applications of control in power electronics

DC-DC converters
Regulate dc output voltage.

Control the duty cycle d(1) such that v(r) accurately follows a reference
signal v, .

DC-AC inverters
Regulate an ac output voltage.

Control the duty cycle d(1) such that v(r) accurately follows a reference
signal v, (1).

AC-DC rectifiers
Regulate the dc output voltage.
Regulate the ac input current waveform.

Control the duty cycle d(r) such that i, () accurately follows a reference
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Converter Modeling

Applications
Aerospace worst-case analysis
Commercial high-volume production: design for reliability and yield
High quality design
Ensure that the converter works well under worst-case conditions
— Steady state (losses, efficiency, voltage regulation)
— Small-signal ac (controller stability and transient response)
Engineering methodology
Simulate model during preliminary design (design verification)
Construct laboratory prototype converter system and make it work under
nominal conditions
Develop a converter model. Refine model until it predicts behavior of
nominal laboratory prototype
Use model to predict behavior under worst-case conditions
Improve design until worst-case behavior meets specifications (or until
reliabilitv and oroduction vield are accentable)




Objective of Part II

Develop tools for modeling, analysis, and design of converter control

systems

Need dynamic models of converters:

How do ac variations in v (1), R, or d(1) affect the output voltage v(1)?
What are the small-signal transfer functions of the converter?

Extend the steady-state converter models of Chapters 2 and 3, to
include CCM converter dynamics (Chapter 7)

Construct converter small-signal transfer functions (Chapter 8)
Design converter control systems (Chapter 9)

Design input EMI filters that do not disrupt control system operation
(Chapter 10)

Model converters operating in DCM (Chapter 11)

Current-nroarammed control of converters (Chapter 12)

Modeling

Representation of physical behavior by mathematical means

Model dominant behavior of system, ignore other insignificant
phenomena

Simplified model yields physical insight, allowing engineer to
design system to operate in specified manner

Approximations neglect small but complicating phenomena

After basic insight has been gained, model can be refined (if
it is judged worthwhile to expend the engineering effort to do
s0), to account for some of the previously neglected
phenomena




Neglecting the switching ripple

Suppose the duty cycle
is modulated
sinusoidally:

d(t)y=D+ D, cosw,t
B

where D and D, are
constant
and the mbdutation
frequency w,, is much
smaller than the
converter switching
frequency w, = 2xf.
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The resulting variations in transistor gate
J?%Ne signal and converter output voltage:
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Contains frequency components at:

* Modulation frequency and its
harmonics

+ Switching frequency and its
harmonics

+ Sidebands of switching frequ

Fundamentals of Power Electronics

With small switching ripple, high-
frequency components (switching
harmonics and sidebands) are small.

If ripple is neglected, then only low-
frequency components (modulation

ency frequency and harmonics) remain.
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Objective of ac converter modeling

- Predict how low-frequency variations in duty cycle induce
low-frequency variations in the converter voltages and
currents

« Ignore the switching ripple
-« Ignore complicated switching harmonics and sidebands
Approach:

« Remove switching harmonics by averaging all waveforms
over one switching period
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Averaging to remove switching ripple

Average over one switching
period to Jemove switching

ripple:

Note that, in steady-state,
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by inductor volt-second
balance and capacitor charge
balance.
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Nonlinear averaged equations

The averaged voltages and currents are, in general, nonlinear
functions of the converter duty cycle, voltages, and currents. Hence,
the averaged equations

ali, ),
(A, o,
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C—gr = ={icO)y,
constitute a system of nonlinear differential equations.

Hence, must linearize by constructing a small-signal converter model.
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Small-signal modeling of the diode

Nonlinear
diode, driven
by current
source having

a DC and small
AC component

Small-signal
AC model

Linearization of the diode i-v
characteristic about a quiescent
Ty operating point
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Buck-boost converter:
nonlinear static control-to-output characteristic
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Example: linearization
at the quiescent
operating point
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Result of averaged small-signal ac modeling
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Small-signal ac equivalent circuit model
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