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Part II
Converter Dynamics and Control

7. AC equivalent circuit modeling
8. Converter transfer functions

9. Controller design

10. Input filter design

11. AC and DC equivalent circuit modeling of the
discontinuous conduction mode

12. Current programmed control




Chapter 7. AC Equivalent Circuit Modeling

7.1 Introduction
7.2 The basic AC modeling approach
7.3 State-space averaging
7.4 Circuit averaging and averaged switch modeling
7.5 The canonical circuit model
7.6 Modeling the pulse-width modulator
7.7 Summary of key points
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Applications of control in power electronics

DC-DC converters
Regulate dc output voltage.

Control the duty cycle d(1) such that v(r) accurately follows a reference
signal v, .

DC-AC inverters
Regulate an ac output voltage.

Control the duty cycle d(1) such that v(r) accurately follows a reference
signal v, (1).

AC-DC rectifiers
Regulate the dc output voltage.
Regulate the ac input current waveform.

Control the duty cycle d(r) such that i, () accurately follows a reference
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Converter Modeling

Applications
Aerospace worst-case analysis
Commercial high-volume production: design for reliability and yield
High quality design
Ensure that the converter works well under worst-case conditions
— Steady state (losses, efficiency, voltage regulation)
— Small-signal ac (controller stability and transient response)
Engineering methodology
Simulate model during preliminary design (design verification)
Construct laboratory prototype converter system and make it work under
nominal conditions
Develop a converter model. Refine model until it predicts behavior of
nominal laboratory prototype
Use model to predict behavior under worst-case conditions
Improve design until worst-case behavior meets specifications (or until
reliabilitv and oroduction vield are accentable)




Objective of Part II

Develop tools for modeling, analysis, and design of converter control

systems

Need dynamic models of converters:

How do ac variations in v (1), R, or d(1) affect the output voltage v(1)?
What are the small-signal transfer functions of the converter?

Extend the steady-state converter models of Chapters 2 and 3, to
include CCM converter dynamics (Chapter 7)

Construct converter small-signal transfer functions (Chapter 8)
Design converter control systems (Chapter 9)

Design input EMI filters that do not disrupt control system operation
(Chapter 10)

Model converters operating in DCM (Chapter 11)

Current-nroarammed control of converters (Chapter 12)

Modeling

Representation of physical behavior by mathematical means

Model dominant behavior of system, ignore other insignificant
phenomena

Simplified model yields physical insight, allowing engineer to
design system to operate in specified manner

Approximations neglect small but complicating phenomena

After basic insight has been gained, model can be refined (if
it is judged worthwhile to expend the engineering effort to do
s0), to account for some of the previously neglected
phenomena




Neglecting the switching ripple

Suppose the duty cycle The resulting variations in transistor gate
is modulated drive signal and converter output voltage:
sinusoidally:
Gate
d(t)y=D+ D, cosw,t drive

where D and D, are

constants, |Dm”|r <= D,

and the modulation
frequency w,, is much
smaller than the
converter switching

frequency w, = 2xf.

Actual waveform vit)
including ripple

Averaged waveform (Wi},
with ripple neglected "

Output voltage spectrum
with sinusoidal modulation of duty cycle

Modulation Switching Switching
Spectgnilm 4 Sfrequency and its Sfrequency and harmonics
of v(r) harmonics sidebands
rm—— rm—— m—"—,
A fIf afy
(t)m wy w
Contains frequency components at: With small switching ripple, high-
- Modulation frequency and its frequency components (switching
harmonics harmonics and sidebands) are small.
+ Switching frequency and its If ripple is neglected, then only low-
harmonics frequency components (modulation
+ Sidebands of switching frequency ~ frequency and harmonics) remain.
Fundamentals of Power Electronics ¢ Chapter 7: AC equivalent circuit modeling




Objective of ac converter modeling

- Predict how low-frequency variations in duty cycle induce
low-frequency variations in the converter voltages and
currents

« Ignore the switching ripple
-« Ignore complicated switching harmonics and sidebands
Approach:

« Remove switching harmonics by averaging all waveforms
over one switching period

Transient Volt-Second Balance




Averaging to remove switching ripple

Average over one switching
period to remove switching
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Nonlinear averaged equations

The averaged voltages and currents are, in general, nonlinear
functions of the converter duty cycle, voltages, and currents. Hence,
the averaged equations
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constitute a system of nonlinear differential equations.

Hence, must linearize by constructing a small-signal converter model.




Small-signal modeling of the diode

Nonlinear
diode, driven
by current

source having C
a DC and small
AC component

Small-signal $
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Result of averaged small-signal ac modeling

Small-signal ac equivalent circuit model
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7.2. The basic AC modeling approach

Buck-boost converter example
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Switch in position 1

Inductor voltage and capacitor
current are: ;
dir) K '

vin=L =

=v(1)

i

L
R s wit)

dv(t) _ v()

ity=C qr =g

Small ripple approximation: replace waveforms with their low-frequency

averaged values:

di(t)
vi()=L —~ar - ('I'Jf))r_l
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Switch in position 2

Inductor voltage and capacitor i *
current are: I c R A
; v (0 . = k3w
v()=L d;(:} =w(r)
dv(r) _ v(r)

i(n=C Tt =—i(1 - a
Small ripple approximation: replace waveforms with their low-frequency
averaged values:

di(t)
v =L Tl (11(.")).1._
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7.2.1 Averaging the inductor waveforms

Inductor voltage waveform v, (1) (.- (n)
; A0),.

Low-frequency average is ‘
found by evaluation of (!’}_(\f})_}.‘ =d(1.“(”)r'. il ("“)):_‘

[ df, A
(_Jr,(r))_r =7 J- x(t)dt

- (.-m)f -
Average the inductor voltage

in this manner:

(w_(r)).,.J _ Tl J " v (t)dt =d(r) <l'_k,(.'))__‘.‘ +d'(1) (\’(r))h

Insert into Eq. (7.2):

d <i( r))_. This equation describes how
L——"% _ ap (,.2( 1 )) o+ d' (,.(”> = the low-frequency components
dt T * of the inductor waveforms

evnlve in time




7.2.2 Discussion of the averaging approximation

Use of the average inductor voltage V(1) (w0},

allows us to determine the net change | = e —
in inductor current over one switching (), =d{v0), +d'(v0),
period, while neglecting the switching 0 = rii : 7+ ?
ripple. ! "

In steady-state, the average inductor (o),

voltage is zero (volt-second balance), i
and hence the inductor current

waveform is periodic: i(t + T)) = i(t).
There is no net change in inductor
current over one switching period.

i)

During transients or ac variations, the 0 aT T I
average inductor voltage is not zero in )
general, and this leads to net variations
in inductor current.

Inductor voltage and current
waveforms

Net change in inductor current is correctly
predicted by the average inductor voltage

Inductor equation: di(r)
L dt

Divide by L and integrate over one switching period:

f 'm'=-” "y, (v)dv

Left-hand side is the change in inductor current. Right-hand side can
be related to average inductor voltage by multiplying and dividing by T,
as follows:

= v (1)

i+ T~ =17, (v0),

So the net change in inductor current over one switching period is
exactly equal to the period T, multiplied by the average slope ( v, ), /L.




Average inductor voltage correctly predicts
average slope of i;(t)

Actual waveform, Averaged waveform
i) o including ripple ( i( !)> .
i(0)4e —
d(v,n), +d'{(v®),
L P
0 dTT TS ;

The net change in inductor current over one switching period is exactly
equal to the period T, multiplied by the average slope ( v, );, /L.

d(i0),,
dt

We have
it +T) =ity =1 T, (v (),
Rearrange:
i(t+T)—i(t)
L % = (v(0),.

%

Define the derivative of (i ), as:

d f(f) . 1+ 7T : i
(i), d( 1J 'f(:);k]:‘(”r‘" i(1)

dr  ~ di\T, T
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Computing how the inductor current changes
over one switching period

it
Let's compute the actual
inductor current waveform, 0y
using the linear ripple
approximation.

(lb‘(”):
With switch in iWr) = i o+ (a.) =
e Ny gt Nttt et
position 1: —_—
(final value) = (initial value) + (length of interval) (average slope)
i i i v(r)

With switch in iT) = idTr) o+ (aT)) (( L>‘-]
position 2: — — ST LIRS

(final value) = (initial value) + (length of interval) (average slope)

Net change in inductor current over one
switching period

Eliminate i(dT), to express i(T,) T
directly as a function of i(0): i(T) = i(0) + 7* (d(r) (v}, +d'® ("(”>r;)

\..___________‘\/.___________..-f
(o),

The intgrmediate' SteP C?f Actual waveform, Averaged waveform
computing i(dT,) is eliminated. including ripple ( )>
: i(t) _ 1y,
The final value i(T) is equal to v (1) v(1)
the initial value i(0), plus the L
switching period Ts multiplied i) ‘\\_,.-5;.("'?.)
by the average slope (v, ), /L. d N s
. d{v ), +d'(v0),
L
0 dr, T, it




7.2.3 Averaging the capacitor waveforms

Average capacitor current:
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Collect terms, and equate to C d( v ), /dr:
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Capacitor voltage and current
waveforms

7.2.4 The average input current

We found in Chapter 3 that it was
sometimes necessary to write an
equation for the average converter input
current, to derive a complete dc
equivalent circuit model. It is likewise
necessary to do this for the ac model.

Buck-boost input current waveform is

<:'(f:}, . during subinterval 1

i =
L 0

during subinterval 2

Average value:

(i), =d@ (i),

i

{:‘!:’:),I

(i““J)f

Converter input current
waveform




7.2.5. Perturbation and linearization

Converter averaged equations:

. d(i),

=d(1) (v,)), +d'®) (v0),

dt
d{v(1) (1)
C {‘di)":—d'(.'}(.-‘(r}){l—<! ;‘,)“

(i0), =dw (i),

—nonlinear because of multiplication of the time-varying quantity d(r)
with other time-varying quantities such as i(r) and v(1).

Construct small-signal model:
Linearize about quiescent operating point

If the converter is driven with some steady-state, or quiescent, inputs
dinn=D
(l'k_(.!')){ =V,

then, from the analysis of Chapter 2, after transients have subsided
the inductor current, capacitor voltage, and input current

(i), (o), (i0),

reach the quiescent values /, V, and /,, given by the steady-state
analysis as

o _ )
v=-Lv,
R
I=-p&
1.=D1

g




Perturbation

So let us assume that the input voltage and duty cycle are equal to
some given (dc) quiescent values, plus superimposed small ac
variations:

(), = V. + 000
d(ty=D+d(n

In response, and after any transients have subsided, the converter
dependent voltages and currents will be equal to the corresponding
quiescent values, plus small ac variations:

(i), =1+ i@

(v), =V +90)

(in), =1+ i

The small-signal assumption

If the ac variations are much smaller in magnitude than the respective
quiescent values,

|70 | <<| V.|
|c?(f}|<<|!)|
|f(r}|~:~:|f|
il“-‘(.r}|~:<|V|
I,

fk(.r}|<<

then the nonlinear converter equations can be linearized.




Perturbation of inductor equation

Insert the perturbed expressions into the inductor differential equation:

¢ d(!;i””] =(D+dw) (v, +0,0)+ (D' -dw) (v +70))

note that d'(r) is given by

2y =(1-d)=1-(D+d)=D-dw withD' =1 -D
Multiply out and collect terms:

0 '.~
L ( . m) = (pv+DV) + (Dr-.m + D)+ (V, - V) J(f)] + dn (F“(r) - 0(1))
A

dt di
e
De terms 1" order ac terms 2" order ac terms
(linear) (nonlinear)

The perturbed inductor equation

0 *
A, dio) : " , X - .
L[“,I +— )_ (pva+DV) + (Dvi.{fHfo(.'H[V‘.—V] dm) + (o) (9,0 - 9(0))

G S -~ T

Dec terms 1" order ac terms 2" order ac terms
(linear) (nonlinear)

Since [ is a constant (dc) term, its derivative is zero
The right-hand side contains three types of terms:
+ Dc terms, containing only dc quantities

« First-order ac terms, containing a single ac quantity, usually
multiplied by a constant coefficient such as a dc term. These are
linear functions of the ac variations

- Second-order ac terms, containing products of ac quantities. These
are nonlinear, because they involve multiplication of ac quantities




Neglect of second-order terms

(1] 3
I [% + d:f”) = (Dv+DV) + [Dr-\.m + D7) + (V.- V) ;?u)) + ) (7.0 - 71y
| el AT,

Dc terms 1" order ac terms 2" order ac terms
(linear) (nonlinear)
Provided | v | << | Vu| then the second-order ac terms are much
| dw | <«<|D| smaller than the first-order terms. For
) | ; example,
|iw]<<|1] |d@ o, |<<|D 30|  when |d®]<<D
() | << | 4
‘ i | <<|1] So neglect second-order terms.
Also, dc terms on each side of equation
are equal.

Linearized inductor equation

Upon discarding second-order terms, and removing dc terms (which
add to zero), we are left with

di(n

L— = D)+ Do) + (V, - V) d()

This is the desired result: a linearized equation which describes small-
signal ac variations.

Note that the quiescent values D, D", V, V,, are treated as given
constants in the equation.




Capacitor equation

Perturbation leads to
c d[m) =- [D' —z?m] (1+ i) - -[-v—"';m].

Collect terms:

1 % . i - -
C(LT}J, d‘“’): [- D'I—%) + [- D'sm-‘(T”ndm) +  dwiw
dwi)
—_——

dt dt
Ry 2o o
Dc terms 1" order ac terms 2™ order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are
equal. The following terms remain:

di(r) g "
P D'i(r) - Ti—fﬂ‘(!)

This is the desired small-signal linearized capacitor equation.

c v(r)

Average input current

Perturbation leads to
I +i ()= (D + r?(.-)] (.-' + f(r)]

Collect terms:

I, + 0] = {D!] + (Df(;)+ h?(;]} + d(nin
- —_— —_—
—_—— i
Determ 1" order ac term  Determ 1" order ac terms 2™ order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are
equal. The following first-order terms remain:

i(1)y=Di(t) + 1d(1)

This is the linearized small-signal equation which described the
converter input port.




7.2.6. Construction of small-signal
equivalent circuit model

The linearized small-signal converter equations:

di(n

L—; =D+ Do) +(V, - V) dn)
di(r) % (1) i
C di ——DI‘[!}—T+."J(”

() =Di()+ Id(1)

Reconstruct equivalent circuit corresponding to these equations, in
manner similar to the process used in Chapter 3.

Inductor loop equation

diln)
dt

L = Do) + D'+ (V, - v} din

. (ve-V)do

SBOO { +}
12 L i@~ S
dt

Dy, (1) [j] W
I

I:; D'(r)




Capacitor node equation

dii(t) _ i W -
C qF =4 D) - =+ Id(1)

D'i(r) 1:' !J(r)()

dv(t)
dt

V(1)

= =a|":::’

Input port node equation

i (1) = Di(1y + 1d(1)

P, C_r) m’fmc




Complete equivalent circuit

vy

v 1)

Collect the three circuits:

fnfuJC) Diry

. (v,-v)dw
mnry

DN

i) :ln'r’::: () oy == W SR

Replace dependent sources with ideal dc transformers:

(V- Vv)dw)

J'(fu'] ()

. - >
—_C W) g

Small-signal ac equivalent circuit model of the buck-boost converter




