7.2. The basic AC modeling approach

Buck-boost converter example
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7.2.1 Averaging the inductor waveforms

Inductor voltage waveform v, (1)

Low-frequency average is
found by evaluation of
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in this manner:
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This equation describes how
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7.2.2 Discussion of the averaging approximation

Use of the average inductor voltage
allows us to determine the net change
in inductor current over one switching
period, while neglecting the switching
ripple.

In steady-state, the average inductor
voltage is zero (volt-second balance),
and hence the inductor current
waveform is periodic: i(r + T,) = i(1).
There is no net change in inductor
current over one switching period.

During transients or ac variations, the
average inductor voltage is not zero in
general, and this leads to net variations
in inductor current.
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Net change in inductor current is correctly
predicted by the average inductor voltage

Inductor equation: di(r)
dr ~ vilf)

Divide by L and integrate over one switching period:
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Left-hand side is the change in inductor current. Right-hand side can
be related to average inductor voltage by multiplying and dividing by T,
as follows:

it+T)—i =117, (v0),

So the net change in inductor current over one switching period is
exactly equal to the period T, multiplied by the average slope ( v, ), /L.

Average inductor voltage correctly predicts
average slope of i;(t)

Actual waveform, Averaged waveform
including ripple .
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The net change in inductor current over one switching period is exactly
equal to the period T, multiplied by the average slope ( v, );, /L.
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We have
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Rearrange:

i(t+ T,)—i(t
L w = (1,{(;))!_’

2

Define the derivative of (i ), as:
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Computing how the inductor current changes
over one switching period
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Let's compute the actual
inductor current waveform, i0)
using the linear ripple
approximation.
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Net change in inductor current over one
switching period

Eliminate i(dT), to express i(T,)
directly as a function of i(0):

The intermediate step of
computing i(dT,) is eliminated.

The final value i(T)) is equal to
the initial value i(0), plus the
switching period Ts multiplied
by the average slope ( v, );, /L.
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7.2.3 Averaging the capacitor waveforms

Average capacitor current:
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7.2.4 The average input current

We found in Chapter 3 that it was
sometimes necessary to write an

equation for the average converter input

current, to derive a complete dc
equivalent circuit model. It is likewise

necessary to do this for the ac model.

Buck-boost input current waveform is
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7.2.5. Perturbation and linearization

Converter averaged equations:
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—nonlinear because of multiplication of the time-varying quantity d(r)
with other time-varying quantities such as i(r) and v(1).




Construct small-signal model:
Linearize about quiescent operating point

If the converter is driven with some steady-state, or quiescent, inputs
dinn=D
(l'k_(.!')){ =V,

then, from the analysis of Chapter 2, after transients have subsided
the inductor current, capacitor voltage, and input current

(i), (o), (i0),

reach the quiescent values /, V, and /,, given by the steady-state

analysis as
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Perturbation

So let us assume that the input voltage and duty cycle are equal to
some given (dc) quiescent values, plus superimposed small ac
variations:

(1;,::))I =V, + 000

d() =D +d(r)

In response, and after any transients have subsided, the converter
dependent voltages and currents will be equal to the corresponding
quiescent values, plus small ac variations:
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The small-signal assumption

If the

ac variations are much smaller in magnitude than the respective

quiescent values,
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then the nonlinear converter equations can be linearized.

Perturbation of inductor equation

Insert the perturbed expressions into the inductor differential equation:
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note that d'(r) is given by
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Multiply out and collect terms:
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The perturbed inductor equation
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Since [ is a constant (dc) term, its derivative is zero
The right-hand side contains three types of terms:
« Dc terms, containing only dc quantities

« First-order ac terms, containing a single ac quantity, usually
multiplied by a constant coefficient such as a dc term. These are
linear functions of the ac variations

- Second-order ac terms, containing products of ac quantities. These
are nonlinear, because they involve multiplication of ac quantities

Neglect of second-order terms
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Also, dc terms on each side of equation
are equal.




Linearized inductor equation

Upon discarding second-order terms, and removing dc terms (which
add to zero), we are left with
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This is the desired result: a linearized equation which describes small-
signal ac variations.

Note that the quiescent values D, D', V, V,, are treated as given
constants in the equation.

Capacitor equation

Perturbation leads to
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Neglect second-order terms. Dc terms on both sides of equation are
equal. The following terms remain:
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This is the desired small-signal linearized capacitor equation.
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Average input current

Perturbation leads to
L+i(D= (D + r?(r)] (f + f(r)]

Collect terms:
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Neglect second-order terms. Dc terms on both sides of equation are
equal. The following first-order terms remain:

i(1)y=Di(t) + 1d(1)
This is the linearized small-signal equation which described the
converter input port.

7.2.6. Construction of small-signal
equivalent circuit model

The linearized small-signal converter equations:
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Reconstruct equivalent circuit corresponding to these equations, in
manner similar to the process used in Chapter 3.




Inductor loop equation
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Input port node equation
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Small-signal ac equivalent circuit model of the buck-boost converter




7.2.7 Discussion of the perturbation and
linearization step

The linearization step amounts to taking the Taylor expansion of the original
nonlinear equation, about a quiescent operating point, and retaining only the
constant and linear terms.

Inductor equation, buck-boost example:
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7.2.8. Results for several basic converters
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7.2.9 Example: a nonideal flyback converter

Flyback converter example
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