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Dominium Power Job Opening

Seeking December graduates.

Engineer | (entry level engineer)

This role provides station and switchyard technical support to the generation plant for high voltage transmission and distribution
equipment. Excellent entry level position for Electrical Engineers to gain Generation/Transmission knowledge.

Major Duties:

. -Responsible for substation/transmission procedure development to support plant human performance and work control
requirements.

. -Insure work orders, work scheduling, Plant Issues, Root Cause / Apparent Cause Evaluations, and SOER reviews are
completed to support station requirements.

. -Provide departmental representation at required station meetings as required by the Nuclear Generation scheduling
processes.

J -Perform secondary engineering review of work prior to work evolutions.

. -Develop necessary training to support System Protection technicians during unit outages.

. -Support Electrical Equipment Specialist in substation inspections.

. -Work with transmission training and methods support personnel.

e -Attend applicable manufacturing training, review vendor manufacturing facilities and attend industry professional meetings
as needed.

. -Perform other duties as assigned.

Is it full-time or part-time? Full time Where is it located? Mineral, Va. What are the required qualifications and the desired
qualifications? B.S. EE required. Power systems experience/coursework highly desirable

If interested, send a resume to Prof. Liu, Liu@utk.edu ASAP.
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@ Buck-boost converter example @
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Switch in position 1

4

Inductor voltage and capacitor
current are:

vy = LD =

2

0O

i(1)

R 5 )

Small ripple approximation: replace waveforms with their low-frequency

averaged values:

=LY < (o),

dv(t) _ (),

iC(r) = C d[ R




Switch in position 2

Inductor voltage and capacitor
current are:

vty =L 4D =\
i) =80 =i 20

0O

i(1)

Small ripple approximation: replace waveforms with their low-frequency

averaged values: \L/

v =L (i

iy =C M (i), -

(0},

R




7.2.1 Averaging the inductor waveforms

Inductor voltage waveform v, (1) 4 (V (1)
8

Low-frequency average is
found by evaluation of

(), =, [ s

Average the inductor voltage

in this manner:
— <VL(t)>TS - % f S VL(T)d@I(I) (Vg(t)>TS +d(®) <V(t)>Ts

—————n.,
——

t+7T

Insert into Eq. (7.2):
d< i(t)) This equation describes how
7 —— 1T _ d(?) (Vg(l‘)>Tv +d'(1) <V(t)>;rs the low-frequency components

dt of the inductor waveforms
/_:=: . .
avonlve in time.
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7.2.2 Discussion of the averaging approximation

Use of the average inductor voltage
allows us to determine the net change
in inductor current over one _switching
period, while neglecting the switching
ripple. - T

In steady-state, the average inductor
voltage is zero (volt-second balance),
and hence the inductor current
waveform is periodic: i(t + T,) = i(?).
There is no net change in inductor
current over one switching period.

During transients or ac variations, the
average inductor voltage is not zero in
general, and this leads to net variations
in inductor current.

04 (10),,

(v,,g))},_x =d{v,), + d’(vl(r))f_x

—

T at, 1, 1
| -
(vn))
(1) 4
i(dT,)
i(0) Ve (s (T,
L L

0 dj: T‘; fr
Inductor voltage and current
waveforms




Net change in inductor current is correctly
predicted by the average inductor voltage

Inductor equation: di(r)

L 7 = v (1)

Divide by L and integrate over one switching period:

t+7 1+ 7
f di=% f v, (t)dT

Left-hand side is the change in inductor current. Right-hand side can
be related to average inductor voltage by multiplying and dividing by T
as follows:

it +T)— i) = T, (v0)),

So the net change in inductor current over one switching period is
exactly equal to the period T, multiplied by the average slope (v, );. /L.



Average inductor voltage correctly predicts
average slope of i, (f)

Actual waveform, Averaged waveform
including ripple -
O

/

i(0) — i(Ty)
d<vg(t)> . +d' (v(1)) .
1 L N
0 dT, T. ot

The net change in inductor current over one switching period is exactly
equal to the period T, multiplied by the average slope (v, ), /L.



(i),
dt

A

We have
i+ T)— i) =7 T, (v(®),

Rearrange:

I 1(r+ T%) (1) ( L(t)>

S

Define the derivative of (i), as:

(l‘) _
zt ( I e )d) z(t+T) i)
Hence, ( )
d(i(n)),
L dt - = <V1J(t)>;,vs



Computing how the inductor current changes
over one switching period

i(1) 4

Let’s compute the actual /\i(ﬂi\/
inductor current waveform, i(0) (v)y (), i(T)
using the linear ripple T I
approximation.

0 ar, T 1

(Vg(t)>f
With switch in idT) = i(0) + (dTS) s
position 1: “ — < 5
(final value) = (initial value) + (length of interval) (average slope)
: L v(1)

With switch in i(T) = idT) + ( d‘TS) (( L)r,_)
position 2: — — _—

(final value) = (initial value) + (length of interval) (average slope)



Net change in inductor current over one
switching period

Eliminate i(dT,), to express i(T)) T
directly as a function of i(0): i(T,) = i(0) + 4* (d(t) (v0), +d'@® <v(t)>7,)
R/’_____/
<VL(t)>TS
The inte_rmediate_ SteP Qf Actual waveform, Averaged waveform
computing i(dT,) is eliminated. o including ripple (i(t))
(7 I
The final value i(T,) is equal to f V(1) v(?)
the initial value i(0), plus the .
switching period Ts multiplied =TT ;‘(T)
by the average slope (v, ), /L. : R s
k d(vg(t)>T +d (v(r))TS
L
} } »
0 drT, T. 1




7.2.3 Averaging the capacitor waveforms

Average capacitor current:

®), V(1))
(ic0), =d® (— b R> ) +d'(0) (— (i), - ( R> :

Collect terms, and equate to C d( v ), /dt:

|

ic(t) A _ <V(t)>T.s-

v(0)+

{0),

-~ RC

RC

C

Capacitor voltage and current

waveforms




7.2.4 The average input current

We found in Chapter 3 that it was i (1) 4
sometimes necessary to write an
equation for the average converter input
current, to derive a complete dc
equivalent circuit model. It is likewise
necessary to do this for the ac model. 0

(i),

Buck-boost input current waveform is

Converter input current
(i(t))T“_ during subinterval 1 waveform

ig(t) =

0  during subinterval 2

Average value:




7.2.5. Perturbation and linearization

Converter averaged equations:

i
L <l;?)“ = d(1) <vg(t))Ts +d') (v(t))Ts
d{v0), ().,

C———=-d® (i), -~

<ig(t)>TS = d(1) (i(z))n

—nonlinear because of multiplication of the time-varying quantity d(z)
with other time-varying quantities such as i(r) and v(7).
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Construct small-signal model:
Linearize about quiescent operating point

If the converter is driven with some steady-state, or quiescent, inputs

d(it)y=D
(vg(t)> i, - Vg

then, from the analysis of Chapter 2, after transients have subsided
the inductor current, capacitor voltage, and input current

(i®),(vo), (i0),,

reach the quiescent values /, V, and /,, given by the steady-state
analysis as |

D
v=-Dy,
v
I'=-5R

I,=DI



Perturbation

So let us assume that the input voltage and duty cycle are equal to
some given (dc) quiescent values, plus superimposed small ac
variations:

(v0), =V, + 0,0 YI

d(t)=D +d(®)

In response, and after any transients have subsided, the converter
dependent voltages and currents will be equal to the corresponding
quiescent values, plus small ac variations:

(i(t))TS =1+ (1)
<v(t)>TS =V + 00
<ig(r)>T =1+ 1,0



The small-signal assumption

If the ac variations are much smaller in magnitude than the respective
quiescent values,

0,0 | <<| V.|
|J(r) <<|D
(1) |<<|1]
|9 | << |V

1) <<|1

£

then the nonlinear converter equations can be linearized.



Perturbation of inductor equation

Insert the perturbed expressions into the inductor differential equation:

<
d(§+f(t2? ) \O k
L 2 =(D+d )) v, +0,0)) +(D - da)

note that d’(¢r) is given by

d)=(1-d®)=1-(D+d®)=D-dw thp =1-D

Multiply out and collect terms: (/

a di(1) , A 5 . N
( 7 (DVg+ D'VN+(| Do) + D'9(t) + (V- V) dw)} + d(2) (vg
Dc terms 1" order ac terms 2" order ac terms
(linear) (ggginear)

\



The perturbed inductor equation

0 4
L(ﬂ .\ dz(t)) = (DV+DV) + (Df;‘g(t) + D01ty + (V- V) d‘(t)) + (o) (9,0 - ¥

dt dt
I R/"—_’/ —

Dc terms 1 order ac terms 2" order ac terms
(linear) (nonlinear)

Since I is a constant (dc) term, its derivative is zero
The right-hand side contains three types of terms:
« Dc terms, containing only dc quantities

+ First-order ac terms, containing a single ac quantity, usually
multiplied by a constant coefficient such as a dc term. These are
linear functions of the ac variations

- Second-order ac terms, containing products of ac quantities. These
are nonlinear, because they involve multiplication of ac quantities



Neglect of second-order terms

0 ?
L(‘” + d’(t)) = (DVQ+ D'V] + (Dﬁg(r) + DF(t) + (V, - V) 3(:)) + 4o

%

dt dt
S — W
Dc terms 1 order ac terms 2" order ac terms
(linear) (nonlinear)
Provided ’ﬁg(t) <<|V,| then the second-order ac terms are much

‘g(t) <<|D smaller than the first-order terms. For

X example,

(1) | << |1 A " 5

@) | ]d(z) vg(z)]<<|Dvg(r)| when |d®|<<D
| (1) | << |V
(0| << |1, So neglect second-order terms.

Also, dc terms on each side of equation
are equal.



Linearized inductor equation

Upon discarding second-order terms, and removing dc terms (which
add to zero), we are left with

di(t)

L= = D) + D'¥(1) + (vg - v) d(t)

0 . 0 / . . . " .
This is the desired result: a linearized equation which describes small-
signal ac variations.

Note that the quiescent values D, D’, V, V , are treated as given
constants in the equation.
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Capacitor equation

Perturbation leads to

Ao )10} L)

Collect ter

c ( (ﬁ D) — ﬁg) + 1da) Y1)
—_— — R/’_—’/

d
“orderact 2" order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are
equal. The following terms remain:

dv O N
:150 =- i -2 4 1)

R
This is the desired small-signal linearized capacitor equation.

C
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Average input current

Perturbation leads to

I+ it =(D+dw) (1 +i0)

Collect terms:

I, + o = (D) + (Diw+1dw) +  dwi
Dc term 1" order ac term  Dc term 17 order ac terms 2™ order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are
equal. The following first-order terms remain:

1,(1)=Di(t) + 1d(t)

This is the linearized small-signal equation which described the
converter input port.



7.2.6. Construction of small-signal

equivalent circuit model

The linearized small-signal converter equations:

di(1)

L—== D)+ D'%(1) + (Vg - V) d()
dp . D X
C 2(;) —_D'i(r) - Vg) + 1d(0)

[ (t) = Di(t) + 1d(t)

Reconstruct equivalent circuit corresponding to these equations, in
manner similar to the process used in Chapter 3.



——

—% @ L d;(t) = Di (1) + D'0(t) + (Vg - V) ac)
dp . N
GO . i3t
—

H fg(t)sz(t)_l_ld‘(t) L —
ﬁ




Inductor loop equation

di(r)

Ldt

= D0(1) + D'9(0) + (V,— V] d(0)

;o (Ve-V)do

+Ldf(t) - @

dt
Dy | * + | DY@




Capacitor node equation

dor)

c— =— i) - 2D 4 1am

R

dv(t) + V(1)
dt Y Y R

Dim| || 1de Cc—= "W SR




Input port node equation

i ()= Di(t) + 1d(1)

0 @ 1d(1) (D Di(n | |




Complete equivalent circuit

V(1)

Collect the three circuits:
i(1)

P(1) +) 1d@) Din| | M 250 D'5(1) | | pie 1d)y ==c 0 S R
Replace dependent sources with ideal dc transformers:
L
D, e ()—2 ! S
(1) \/ #
XD ONE - R O@ Tz

i e

|G fF—r

Small-signal ac equivalent ci&u(ﬁmodel of the buck-boost converter \




7.2.7 Discussion of the perturbation and
linearization step

The linearization step amounts to taking the Taylor expansion of the original
nonlinear equation, about a quiescent operating point, and retaining only the
constant and linear terms.

Inductor equation, buck-boost example:

i),

L =d(0) (v(0), +d'0) (1)), = fl(("g“”%; (), d(”)

Three-dimensional Taylor series expansion:

- of(v., V. D
|
Ve=Vg
af (V.. v. D of(V.. V.d
+9(F) l ;vv ) V:V+J(r) 1( - ) o

+ higher-order nonlinear terms



Linearization via Taylor series

Equate DC terms: » afilv,, V.D
q L(% ¥ d;(;)) = (Ve V. D)+ 0,0 ( = )
0= f(V, V. D) I
Coefficients of linear terms are: o (Ve 7. D) (Ve V.a)
+ V(1) v +d(1) éd
v=V d=D
9 fl(vg, v, D)
ov =D + higher-order nonlinear terms
¢ ve=V,
g~ 28
afl(vg, v, D) Hence the small-signal ac linearized
5 =D equation is:
¥ v=V
di(t) R " n
o(V,e V. d) L—7==DV () + D'o(0) + (V, - V] d(1)
y =V,-V
I d=D



7.2.8. Results for several basic converters

Buck

. V. d (1)
| ((D)——v50
\J f(t) +
D,(1) +) 1d (1) ‘D S R S 90
L ve() ,
O D :1
Y +
(1)
1d(1) C== RSO




Results for several basic converters

A~

Vv

Buck-boost

(@) o

1d(1)

—Cc " SR




7.2.9 Example: a nonideal flyback converter

Flgbagg( converter example
Ix D,
. “h > « MOSFET has on-
i,(0) + resistance R
@ y H c== kS W0 + Flyback transformer
has magnetizing
f) ) inductance L, referred
B to primary
- E 0




Circuits during subintervals 1 and 2

Flyback converter, with Subinterval 1
fransformer equivalent '
circuit

~.
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—
~
~
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Subinterval 1

Circuit equations:

Vf(r) = Vp(‘t) — l(E) R()n

io(ny=-"2)

i (1) = (D)

—_——

Small ripple approximation:
vi(0) = (v, (), — (i), R,

FOES <V(12 :

0= (i),

MOSFET conducts, diode is
reverse-biased



Subinterval 2

Circuit equations:

n=-"0
= =0
i (1)=0
—m
Small ripple approximation: | s

(v),
o= m MOSEET is off, diod
. IS Of11, dlode
i(t) =— <l(2>“ _ <V(Z>Tf conducts

i()=0
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Inductor waveforms

Average inductor voltage:

- <v<r>>rs)

(v(0), =d@) ((vgu))TS (i), R) +d'(1) ( .
Hence, we can write:

(i), (o).,

L——==d® (v(0), ~d®) (i), R, ~d©®)




Capacitor waveforms

LA1) o i v V(1) 4 (i(t)>TS (V(I)>TS
n R
<iC(r)>T
........... DU SRS I
0 dT. T, i
L
—Vv/R

Average capacitor current:

~{0),, ) o ((i(r))n <v<r>>T,)

(i), =d@ ( -

Hence, we can write:

o), (i), (o),
a AW TR

R R

C



Input current waveform

...... P I
(i),
0 v .
0 drT T, t

Average input current:
(i), =d® (D),




The averaged converter equations

L <ldt> ~=d(1) (Vg(f)>n—d(t) (i(ﬂ)n R, —d\(1) & n> :

a(vn),  (im), (o),
C—gr =40 —F7—~—%

(i), =d® (i®),

— a system of nonlinear differential equations

Next step: perturbation and linearization. Let

(v0), =V, +0,0) (i), =1+ i@
d(t)=D +d(1) (), =V + 00
(i), =1,+ 1,0



Perturbation of the averaged inductor equation

Al
L O;? ), _ d() (v(D), —d@ (i), R,—d(®) <V(,?>’*
L M = (D + J(z)) (Vg + ﬁg(t)) = (D’ _ J(t)) (V +n17(t)) ~ (D .\ d‘(t)) ([ N f(t)) >

0 d + %) . a
L ( ar, ;(f)) = (pvi- Y DRI} + (ug(z) 0D v+ Yok, ) do) - DRoni(r))

e B
———

Dc terms 1% order ac terms (linear)

+ (d’“(t)ﬁg(r) + c’i(t)@ . J(t)f(t)Rm)

R/”____,/

d .
2" order ac terms (nonlinear)



Linearization of averaged inductor equation

Dc terms:

0=DV-DY —DR,I

Second-order terms are small when the small-signal assumption is
satisfied. The remaining first-order terms are:

di(t)

Ldr

n -

= Do(1) — D’#l " (Vg ool IRon) d(t) — DR, i(?)

This is the desired linearized inductor equation.



Perturbation of averaged capacitor equation

Original averaged equation:

a(vn),  (iw), (o),
0D _ g (00,0

Perturb about quiescent operating point:

- d(v+00) (D' ) 3(0) (1+i0) (v+00)

dt n R
Collect terms:
cle, O\ _(pr_v), [Dio_wo _1do)| _ die)
dt dt |\ " R n R n __n
~_— R/—'—‘/
Dc terms 1% order ac terms 2™ order ac term

(linear) (nonlinear)



Linearization of averaged capacitor equation

Dc terms:

_(D1 _V
0= (T - F)
Second-order terms are small when the small-signal assumption is
satisfied. The remaining first-order terms are:

doty  Di@ o)  1d()
- T n

Cdt_” R

This is the desired linearized capacitor equation.



Perturbation of averaged input current equation

Original averaged equation:

(i), =d® (i0),,
Perturb about quiescent operating point:

I+ 0 =(D+dw) (1 +i0)

Collect terms:

I, + () = (p1) + (Df(t)ua‘(r)) + dnio
~— — —_— — —

d
Dc term 1" order ac term Dc term 1% order ac terms 2" order ac term
(linear) (nonlinear)



Linearization of averaged input current equation

Dc terms:

I,=DI

Second-order terms are small when the small-signal assumption is
satisfied. The remaining first-order terms are:

i ()= Di(t) + 1d(1)

This is the desired linearized input current equation.



Summary: dc and small-signal ac
converter equations

Dc equations:

0=DV,-DY —DR,I

DI V
o=(5 - ¢}
1,=DI

Small-signal ac equations:

di(t) _ . () v ; :
L— = =Do0)~ D'~ + (V + - IRO,,_) d(t) — DR, i(1)
c dv(t) D'y v@) 1d(1)
dt — n R n

[ (t) = Di(t) + 1d(t)

Next step: construct equivalent circuit models.



Small-signal ac equivalent circuit:
inductor loop

di 5 . )
L ;—(;) = Do (1) — D'%f) + (Vg T . IR,,H) d(t) — DR, i(f)
7 Vv
. DR d(t)(Vg—IRm+ n)
+ -
, di@

dt .

Do [ * |




Small-signal ac equivalent circuit:
capacitor node

do) _ Di@ s 140
n

Cdr_”« R

dv(t) s V(1)
dr Y YR




Small-signal ac equivalent circuit:
converter input node

[ ()= Di(t) + 1d(1)

201 @ Iz O BT




Combine circuits:

[ (D)
>

Small-signal ac model,
nonideal flyback converter example

7 %
L DROH d([)(vg—lRon+F)

D (1) ’_f) 1d (1)

9,(0)

s> M——(()—

1(1)

piw | |

D'v() | +

n —

Do (1)

D, 2
T :1 (1)

1d(t —
MO ¢ == ¥ gR

Replace dependent sources with ideal transformers:

: I d (z)(vg _ IR, + %)
L l: r.
> b T () brin -
i(n) DR, \/
D 1d (1) %ké é\é Ici(r) C == " SR




