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7.5 The canonical circuit model

All PWM CCM dc-dc converters perform the same basic functions:

- Transformation of voltage and current levels, ideally with 100%
efficiency

+ Low-pass filtering of waveforms
- Control of waveforms by variation of duty cycle

Hence, we expect their equivalent circuit models to be qualitatively
similar.

Canonical model:

+ A standard form of equivalent circuit model, which represents
the above physical properties

* Plug in parameter values for a given specific converter




7.5.1. Development of the canonical circuit model
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Steps in the development of the canonical circuit model
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4. Control input variations also induce ac variations in converter waveforms
+ Independent sources represent effects of variations in duty cycle

+ Can push all sources to input side as shown. Sources may then become
frequency-dependent




Transfer functions predicted by canonical model
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Line-to-output transfer function: G (s)= 7.5 =M(D) H (s)
Control-to-output transfer function: G (s) = g’}« =e(s) M(D) H (5)
(s)

7.5.3 Canonical circuit parameters for some
common converters
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Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters
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7.6 Modeling the pulse-width modulator
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Equation of pulse-width modulator

For a linear sawtooth waveform: vy, i
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Perturbed equation of pulse-width modulator

PWM equation: Block diagram:
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Sampling in the pulse-width modulator

The input voltage is a
continuous function

of time, but there . Sampler d
can be only one c " ud ;{
discrete value of the Vi

duty cycle for each S

switchin riod.
aRa Pulse-width modulator

Therefore, the pulse-
width modulator
samples the control
waveform, with sampling rate equal to the switching frequency.

In practice, this limits the useful frequencies of ac variations to values
much less than the switching frequency. Control system bandwidth must
be sufficiently less than the Nyquist rate f,/2. Models that do not account
for sampling are accurate only at frequencies much less than f/2.

Chapter 8. Converter Transfer Functions
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Converter Transfer Functions

8.3. Graphical construction of converter transfer
functions
8.3.1. Series impedances: addition of asymptotes
8.3.2. Parallel impedances: inverse addition of asymptotes
8.3.3. Another example
8.3.4. Voltage divider transfer functions: division of asymptotes

8.4. Measurement of ac transfer functions and
impedances

8.5. Summary of key points

Buck-boost converter model
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Bode plot of control-to-output transfer function
with analytical expressions for important features
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Design-oriented analysis

How to approach a real (and hence, complicated) system

Problems:
Complicated derivations
Long equations
Algebra mistakes

Design objectives:

Obtain physical insight which leads engineer to synthesis of a good design

Obtain simple equations that can be inverted, so that element values can
be chosen to obtain desired behavior. Equations that cannot be inverted

are useless for design!

Design-oriented analysis is a structured approach to analysis, which attempts to

avoid the above problems




Some elements of design-oriented analysis,
discussed in this chapter

* Writing transfer functions in normalized form, to directly expose salient
features

+ Obtaining simple analytical expressions for asymptotes, corner
frequencies, and other salient features, allows element values to be
selected such that a given desired behavior is obtained

* Use of inverted poles and zeroes, to refer transfer function gains to the
most important asymptote

Analytical approximation of roots of high-order polynomials
+ Graphical construction of Bode plots of transfer functions and
polynomials, to

avoid algebra mistakes

approximate transfer functions

obtain insight into origins of salient features

8.1. Review of Bode plots

Decibels Table 8.1, Expressing magnitudes in decibels
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5Q is equivalent to 14dB with respect to a base impedance of R, =
1Q, also known as 14dBQ.

60dBpA is a current 60dB greater than a base current of 1pA, or TmA.




Bode plot of f

Bode plots are effectively log-log plots, which cause functions which
vary as f" to become linear plots. Given:
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8.1.1. Single pole response

Simple R-C example
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G(jw) and || G(jw) ||

Let s = jw:
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Asymptotic behavior: low frequency

For small frequency,
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Asymptotic behavior: high frequency
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The high-frequency asymptote of || G(jw) || varies as f/.
Hence, n = -1, and a straight-line asymptote having a
slope of -20dB/decade is obtained. The asymptote has
avalueof1atf =f,.

Deviation of exact curve near f = f,

Evaluate exact magnitude:
atf=fy:
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Similar arguments show that the exact curve lies 1dB below
the asymptotes.




Summary: magnitude
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Phase of G(jw)
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Phase asymptotes

Low frequency: 0°

High frequency: —-90°

Low- and high-frequency asymptotes do not intersect

Hence, need a midfrequency asymptote

Try a midfrequency asymptote having slope identical to actual slope at
the corner frequency f,. One can show that the asymptotes then
intersect at the break frequencies
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Phase asymptotes
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Phase asymptotes: a simpler choice
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Summary: Bode plot of real pole
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8.1.2. Single zero response

Normalized form:

G(s;=(1+diln)

Magnitude:
laGo|=y/T+(&)

Use arguments similar to those used for the simple pole, to derive
asymptotes:

0dB at low frequency, w << w,
+20dB/decade slope at high frequency, o >> ),
Phase:
£G(jw) =tan I(uﬂ),,)

—with the exception of a missing minus sign, same as simple pole




Summary: Bode plot, real zero

N 8
G(s) = [I - w..) +20dB/decade
Ja
”-5.!’;,
I Gty —2 - : : 3
1y, +90"
45"
+45%/decade
LGljw) O

8.1.3. Right half-plane zero

Normalized form:
Gls) = [I = wi)
Magnitude:
|GG | =4/ 1 +[;;,—’”)’

—same as conventional (left half-plane) zero. Hence, magnitude
asymptotes are identical to those of LHP zero.

Phase:

£G(jw)=—1tan"" (3)

wy,
—same as real pole.

The RHP zero exhibits the magnitude asymptotes of the LHP zero,
and the phase asymptotes of the pole




Summary: Bode plot, RHP zero
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8.1.4. Frequency inversion

Reversal of frequency axis. A useful form when describing mid- or
high-frequency flat asymptotes. Normalized form, inverted pole:
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An algebraically equivalent form:
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The inverted-pole format emphasizes the high-frequency gain.

Gis)=




Asymptotes, inverted pole
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Normalized form, inverted zero:
ay
Gis) = (] + TJ

An algebraically equivalent form:

Again, the inverted-zero format emphasizes the high-frequency gain.




Asymptotes, inverted zero
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8.1.5. Combinations

Suppose that we have constructed the Bode diagrams of two
complex-values functions of frequency, G (w) and G,(w). Itis desired
to construct the Bode diagram of the product, G ,(w) = G (w) G,(w).

Express the complex-valued functions in polar form:

G (w) = R,(w) et
G,lm) = Ry(w) e
G_\(U]) = R_l[ w) e

The product G (w) can then be written

Gilm) = G (w) G.(w) = R (w) ™™ Ry{w) e

Gilw)= (R,(m] R,() ] @/® i) + atem)




Combinations

Gw)= (R,(u.l) Rgftu)] 18 (on) + 8360}

The composite phase is

B,(w) =8 (w) + 0,(w)
The composite magnitude is
R.(w)=R,(w) R,(w)

| Ry (w) ]uu = | R\(w) |u|; =) [ R @) |uls

Composite phase is sum of individual phases.

Composite magnitude, when expressed in dB, is sum of individual

magnitudes.

Example 1:  G(s)=

[1 +wil)[1 +

§
w,

with G, =40 =32 dB, f, = w,/2n = 100 Hz, f, = ®,/21 =2 kHz

40 dB
nan LG
20dB
0dB
20 dB 1 (I
~40 dB 45"
60 dB 90°
-135°
-180°
I Hz 10 Hz 100 Hz I kHz 100 kHz




Example 1:  G(s) = Sy

[1 +m%)[‘+u+,,)

with G, =40 =32 dB, f, = w,/2n = 100 Hz, f, = ®,/21 =2 kHz
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Example 2

Determine the transfer function A(s) corresponding to the following
asymptotes:
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