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TABLE I
PHYSICAL PROPERTIES AT 300 K oF S1, 4H-S1C, GAN AND DIAMOND
AND RELATED FIGURES OF MERIT (JOHNSON. KEYES AND BALIGA).!
[unit] Si 4H-Si1C GaN Diamond
_= Eqo[eV] L1247 3234¢i 339d 5474
— €r 11.7 9.66 8.9 5.7
- Ep [MVicm] 03— 33— 5 10
— A [W/em.K] 1.3 3.7 1.3 22
vs [107 em/s] 1.0 2.0 22 1
e [em?/V.s] 1400 900 1000 1000
e [em2/Vis] 450 100 350 2000
JEM [10%% Q.W/s7] 23 900 490 2530
KFM [107 W/Ks) 10 53 17 218
BFM [Si=1] 1 554 188 23068
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Summary: Bode plot, real zero
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Asymptotes, inverted pole
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Example 1:  G(s) = Sy
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with G, =40 = 32 dB. f, = w,/27 = 100 Hz, f, = 0,/27 = 2 kHz
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Example 2, continued

One solution: s
(I + w—l)
A=A —F
(I + w:]
Analytical expressions for asymptotes:
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Example 2, continued

-> A(s)=A
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Another way 1o express A(s): use inverted poles and zeroes, and
express A(s) directly in terms of A
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8.1.6 Quadratic pole response: resonance
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G(s)= = S
v,(s) ) — R Vyf$)

Second-order denominator, of
the form

G(s) = 1
(s) 1 +(a\s @\ Two-pole low-pass filter example

with a, = UR and a,=LC

How should we construct the Bode diagram? ?“ .t
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Approach 1: factor denominator
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U B
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We might factor the denominator using the quadratic formula, then Ua 4_43
construct Bode diagram as the combination of two real polés: ! .
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= If 4a, < a%, then the roots s, and s, are real. We can construct Bode
diagramras the combination of two real poles.

- If wﬁ. then the roots are cemplex. In Section 8.1.1, the
assumption was made that w, is real; hence, the results of that
section cannot be applied and we need to do some additional work.

Approach 2: Define a standard normalized form
for the quadratic case

Gs)=— 1 Gs)=— A —
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+ When the coefficients of s are real and positive, then the parameters T,
w,, and Q are also real and positive

+ The parameters €, w,, an@re found by equating the coefficients of s

« The parameter o, is the angular corner frequency, and we can define f,

= wy/2n —_—

+ The parameter C is called the da%ﬂ ctor. ¢ controls the shape of the
exact curve in the vicinity of f=7,. The roots are complex when C < 1.
+ In the alternative form, the parameter Q is called the qua!.-'tg f%sron Q

also controls the shape of the exact curve in the vicinity of f/=7. The
roots are complex when 0 >0.5.




The Q-factor

In a second-order system, C and Q are related according to
=1
—

Q is a measure of the dissipation in the system. A more general
definition of Q, for sinusoidal excitation of a passive element or system
is

gpcak_mgrcd energy)

Q=2 (energy dissipated per cycle)
-
For a second-order passive system, the two equations above are
equivalent. We will see that O has a simple interpretation in the Bode
diagrams of second-order transfer functions.” ~— ———
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Analytical expressions for f, and Q

Two-pole low-pass filter va(s) I
example: we found that G(s)y=——=
vi(s) 1+ 2+ .v@
P—

Equate coefficients of like G(s) = 1
powers of s with the S)= - +[.8 2
standard form @ (@

Result: = Wy _ 1
Jo= 3 = S/IC




Magnitude asymptotes, quadratic form
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Deviation of exact curve from magnitude asymptotes
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At o = w, the exact magnitude is
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Two-pole response: exact curves
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8.1.7. The low-Q approximation

Given a second-order denominator polynomial, of the form

I 1
T or ) T S —
| +as+a.s’ G(s) T +[ 5 ]3

When the roots are real, i.e., whethen we can factor the

denominator, and construct the Boded@agram using the asymptotes
for real poles. We would then use the following normalized form:
(va)iva)

This is a particularly desirable approach when Q << 0.5, i.e., when the
corner frequencies o, and w, are well separated.
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An example

A problem with this procedure is the complexity of the quadratic
formula used to find the corner frequencies.

R-L-C network example: L

vy(s) _ !
wis) 1+ s‘,% +5LC
=4 7

G(s)=

v i —— > . f
v(s) { e R:, viis)

Use quadratic formula to factor denominator. Corner frequencies are:

L/IR=\/(L/R)'-4LC
2LC

W, W, =
—_—

e

Factoring the denominator

_ LIR=\/(L/R) -4LC

@@= 2LC

This complicated expression yields little insight into how the corner
frequencies w, and w, depend on R, L, and C.

When the corner frequencies are well separated in value, it can be
shown that they are given by the much simpler (approximate)
expressions
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o, is then independent of C, and w, is independent of L.

These simpler expressions can be derived via the Low-Q Approximation.




Derivation of the Low-Q Approximation

Given

s 5\
L Qw, * (U)"]
Use quadratic formula to express corner frequencies w, and w, in
terms of Q0 and w,, as:

o= % 1-V1-40° w,= Q0 1+V1-40"
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Corner frequency w,
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can be written in the form 075 1

w, = w—j' Fi 0.5
where 0.5
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For small Q, F(Q) tends to 1. 0

We then obtain

For Q < 0.3, the approximation F(Q)=11is
for O << _l) within 10% of the exact value.




Corner frequency w,

1-y/1-40°

L 1]
= % Y
can be written in the form

_Qu,

w, = F(Q}
where

Q=4 (1 +yT-307)

For small Q, F(Q) tends to 1.

We then obtain
|

for Q<<

0 0.1 02 0.3 0.4 0.5

0

For Q < 0.3, the approximation F(Q)=1is
within 10% of the exact value.
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The Low-Q Approximation
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Summary: Asymptotes for Complex Poles

Magnitude

Phase
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R-L-C Example

For the previous example:

G(s)=29 _ '
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Use of the Low-Q Approximation leads to
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8.1.8. Approximate Roots of an
Arbitrary-Degree Polynomial

Generalize the low-Q approximation to obtain approximate
factorization of the n"-order polynomial

Psy=1+a,s+a,s*+ - +a,s"

It is desired to factor this polynomial in the form

P(.s')=(1 +1:,.s-][| +t3.s') (I +1:,,.\-]

When the roots are real and well separated in value, then approximate

analytical expressions for the time constants t,, t,, ... T, can be found,
that typically are simple functions of the circuit element values.
Objective: find a general method for deriving such expressions.
Include the case of complex root pairs.

Result

when roots are real and well separated

If the following inegualities are satisfied
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Then the polynomial P(s) has the following approximate factorization
a- dy a
Ps‘l+as l+—s||{l+—=5][1+—3%
( e ] ) ( al ) ( a: ] ( a"_i )

. If the a, coefficients are simple analytical functions of the element
values L, C, etc., then the roots are similar simple analytical
functions of L, C, etc.

+  Numerical values are used to justify the approximation, but
analytical expressions for the roots are obtained




When two roots are not well separated
then leave their terms in quadratic form

Suppose inequality k is not satisfied:

[ a a a,
la,|>>| 2 |>> oo || 8 |25 |1
a, a, a, a,
not
satisfied

Then leave the terms corresponding to roots k and (k + 1) in quadratic
form, as follows:

a, a, s a
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This approximation is accurate provided
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When the first inequality is violated

A special case for quadratic roots

When inequality 1 is not satisfied:

({5 a a
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a, s a,
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Then leave the first two roots in quadratic form, as follows:
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This approximation is justified provided
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8.2.1. Example: transfer functions of the
buck-boost converter

Small-signal ac model of the buck-boost converter, derived in Chapter 7:
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From Lecture 15
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Derivation of transfer functions

Divide numerator and denominator by R. Result: the line-to-output
transfer function is

={_ .’)) 1
D' L 2 LC
=0 + —\+-'__\
dis 1 ED"R § D’

which is of the following standard form:

e 1

Salient features of the line-to-output transfer function

Equate standard form to derived transfer function, to determine
expressions for the salient features:
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Control-to-output transfer function

Express in normalized form:
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S legn=0

This is of the following standard form:

G (5)=0G, ﬂ

m(l+ﬁ+(%ﬂ)2)
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Salient features of control-to-output transfer function

G V.-V v, v
=TT T T 2T DD
LT T DL
—
o

W SR

0=DR\/&

— Simplified using the dc relations: 5 V=- % v;
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Plug in numerical values

Suppose we are given the Then the salient features
following numerical values: have the following numerical
values:
D =06 _D_
i |Gw|=p=15=35dB
v
Vam 3N |G.m]=%= 187.5V = 45.5dBV
L =160uH
' =0-_D___400m;
C = 160F Jo=2x = gvrc ~ 400 H2

0=DR/$ =4=12a8

_@. _ DR _ .
fo=nt=gpr=265kHz

Bode plot: control-to-output transfer function
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Bode plot: line-to-output transfer function
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8.2.3. Physical origins of the right half-plane zero

G(s) f %)

phase reversal at
high frequency

transient response:
output initially tends
in wrong direction




