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Summary: Bode plot of real pole
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Summary: Bode plot, real zero
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Summary: Bode plot, RHP zero
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Asymptotes, inverted pole
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Asymptotes, inverted zero
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Example 1:  G(s) = Sy
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with G, =40 =32 dB, f, = w,/2n = 100 Hz, f, = ®,/21 =2 kHz
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Example 2

Determine the transfer function A(s) corresponding to the following
asymptotes:
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Example 2, continued

One solution: s
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s | gl
L] |+F - uT— 0
Forf < f<f,
5 s
(]| I (7 PR
Aui _'Au 1 =iy w, _AlIT
(1) |, !

Example 2, continued

For f>f,
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So the high-frequency asymptote is
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Another way to express A(s): use inverted poles and zeroes, and
express A(s) directly in terms of A
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8.1.6 Quadratic pole response: resonance

Example
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Two-pole low-pass filter example

How should we construct the Bode diagram?

Approach 1: factor denominator

G(s) =

1

| +a,s+a,s’

We might factor the denominator using the quadratic formula, then
construct Bode diagram as the combination of two real poles:
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= If 4a, < a%, then the roots s, and s, are real. We can construct Bode
diagram as the combination of two real poles.

« If 4a, > a,%, then the roots are complex. In Section 8.1.1, the
assumption was made that w, is real; hence, the results of that
section cannot be applied and we need to do some additional work.




Approach 2: Define a standard normalized form
for the quadratic case
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+ When the coefficients of s are real and positive, then the parameters ¢,
w,, and Q are also real and positive

+ The parameters €, w,, and Q are found by equating the coefficients of s

« The parameter o, is the angular corner frequency, and we can define f,
= wy/2n

+ The parameter C is called the damping factor. € controls the shape of the
exact curve in the vicinity of f= f,. The roots are complex when C < 1.

+ In the alternative form, the parameter Q is called the quality factor. O
also controls the shape of the exact curve in the vicinity of f=f,. The
roots are complex when 0 >0.5.

The Q-factor

In a second-order system, C and Q are related according to

=L

Q is a measure of the dissipation in the system. A more general
definition of Q, for sinusoidal excitation of a passive element or system

1S
= w . (Peak storcd caergy)

~ =" (energy dissipated per cycle)

For a second-order passive system, the two equations above are
equivalent. We will see that O has a simple interpretation in the Bode
diagrams of second-order transfer functions.




Analytical expressions for f, and Q

Two-pole low-pass filter

example: we found that G(s) = LS ]
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Equate coefficients of like G(s) = 1
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Magnitude asymptotes, quadratic form

Inthe form  G(s) = %
1+ 35—+ (L]‘
Quw, [ON
let s = jo and find magnitude: | G(jw) | = L
V(-5 a)
0 Q— oy,
Asymptotes are 11 Gjen) Ny,
0dB
|G]—=1 for w<<wm, 0dp
~2 2048 f 2
IG I - (:{v] for w>>w, [r]
W 40 4B
' —40 dB/decade
—H) dB

014, o 10fy




Deviation of exact curve from magnitude asymptotes
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At o = w, the exact magnitude is

|Glw | =0 or, in dB:

The exact curve has magnitude
Q at f'= f,. The deviation of the
exact curve from the
asymptotes is | O |,
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8.1.7. The low-Q approximation

Given a second-order denominator polynomial, of the form

0 o S , 1
Se=1g a5+ a,s’ or sy = T"‘[“—g]’

When the roots are real, i.e., when Q < 0.5, then we can factor the
denominator, and construct the Bode diagram using the asymptotes
for real poles. We would then use the following normalized form:

EIEE

This is a particularly desirable approach when Q << 0.5, i.e., when the
corner frequencies o, and w, are well separated.

Gis)=

An example

A problem with this procedure is the complexity of the quadratic
formula used to find the corner frequencies.

R-L-C network example: L
g 1.1 v
va(5) 1
G(s)=—= = vils le & v
wis) 14 ‘;% +52LC (%) G e R S s

Use quadratic formula to factor denominator. Corner frequencies are:

L/IR=\/(L/R)'-4LC
2LC
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Factoring the denominator

_ LIR=\/(L/R) -4LC

Rz = JLC

This complicated expression yields little insight into how the corner
frequencies w, and w, depend on R, L, and C.

When the corner frequencies are well separated in value, it can be
shown that they are given by the much simpler (approximate)
expressions
=R L
wy L w, RC

o, is then independent of C, and w, is independent of L.

These simpler expressions can be derived via the Low-Q Approximation.

Derivation of the Low-Q Approximation

Given
G(s)= . S—
T O
LF Qw, * (U)"]
Use quadratic formula to express corner frequencies w, and w, in
terms of Q and w,, as:

_wy 1=y/1-40° W, 1+4/1-40°

oy = 0 3 w, = Q 3




Corner frequency w,
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can be written in the form

w, = % F(Q)

where

For small Q, F(Q) tends to 1.
We then obtain
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For Q < 0.3, the approximation F(Q)=11is
within 10% of the exact value.

We then obtain

) = Q wy

Corner frequency w,
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For small Q, F{Q)tends to 1

for Q<< 5

| For Q < 0.3, the approximation F(Q)=11is
within 10% of the exact value.




The Low-Q Approximation
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For the previous example:
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8.1.8. Approximate Roots of an
Arbitrary-Degree Polynomial

Generalize the low-Q approximation to obtain approximate
factorization of the n"-order polynomial

Psy=1+a,s+a,s*+ - +a,s"

It is desired to factor this polynomial in the form

P(.s')=(1 +1:,.s-][| +t3.s') (I +1:,,.\-]

When the roots are real and well separated in value, then approximate
analytical expressions for the time constants t,, t,, ... T, can be found,
that typically are simple functions of the circuit element values.
Objective: find a general method for deriving such expressions.
Include the case of complex root pairs.

Result

when roots are real and well separated

If the following inequalities are satisfied

a;

a,

sy

a,
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Then the polynomial P(s) has the following approximate factorization

P(s]»-[l+(.*] s)(l+%.&')(l+%s] -——(l+-f—“-—3')
| A

. If the a, coefficients are simple analytical functions of the element
values L, C, etc., then the roots are similar simple analytical
functions of L, C, etc.

+  Numerical values are used to justify the approximation, but
analytical expressions for the roots are obtained




When two roots are not well separated
then leave their terms in quadratic form

Suppose inequality k is not satisfied:

[ a a a
la,|>>| 2 |>> oo || 8 |25 |1
a, a, a, a,
not
satisfied

Then leave the terms corresponding to roots k and (k + 1) in quadratic
form, as follows:
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This approximation is accurate provided
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When the first inequality is violated

A special case for quadratic roots

When inequality 1 is not satisfied:
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Then leave the first two roots in quadratic form, as follows:
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This approximation is justified provided
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8.2.1. Example: transfer functions of the
buck-boost converter

Small-signal ac model of the buck-boost converter, derived in Chapter 7:

1:D
o
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Fundamentals of Power Electronics 71 Chapter 8: Converter Transfer Functions

Derivation of transfer functions

Divide numerator and denominator by R. Result: the line-to-output
transfer function is
() D 1
G (5)=— = {— Hr| =
] D |+5L,+.s'3£
DR D

7,(s) diny=i

which is of the following standard form:

e 1

Fundamentals of Power Electronics 75 Chapter 8: Converter Transfer Functions




Salient features of the line-to-output transfer function

Equate standard form to derived transfer function, to determine
expressions for the salient features:
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Fundamentals of Power Electronics 76 Chapter 8: Converter Transfer Functions

Control-to-output transfer function

Express in normalized form:

| LI
(s) V,—V L
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This is of the following standard form:

-5
G (s)=G, []—w)‘
(1 st (%”)-)

Fundamentals of Power Electronics ™ Chapter 8: Converter Transfer Functions




Salient features of control-to-output transfer function

Vi W
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Q=D'R\/§

— Simplified using the dc relations:

Fundamentals of Power Electronics

-_D
v=-Lv,
S Ve
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80 Chapter 8: Converter Transfer Functions

Plug in numerical values

Suppose we are given the
following numerical values:

D =06

R =10Q
V, =30V
L = 160uH
C = 160uF

Fundamentals of Power Electronics

Then the salient features
have the following numerical
values:

|Go|=B=15=354B

V
| I =187.5V=455dBV

|Gl = ppr

0. P e
Jo=2x = i ~ 40012
=pp/C =

0=DR/€ =4=124B
f_&_L:R
Y27 2;% = 2mDL

=2.65 kHz
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Bode plot: control-to-output transfer function
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Bode plot: line-to-output transfer function
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8.2.3. Physical origins of the right half-plane zero
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« phase reversal at
high frequency

+ transient response:
output initially tends
in wrong direction

Fundamentals of Power Electronics 85 Chapter 8: Converter Transfer Functions

Two converters whose CCM control-to-output
transfer functions exhibit RHP zeroes

(in},, =4 (ir),,
Boost i(ry R - *

Buck-boost 1 2 +

Fundamentals of Power Electronics 86 Chapter 8: Converter Transfer Functions




Waveforms, step increase in duty cycle

i
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diode current to
initially decrease
= As inductor current
increases to its new ,
equilibrium value, v
average diode
current eventually
increases
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e
Fundamentals of Power Electronics 87 Chapter 8: Converter Transfer Functions
Impedance graph paper
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Transfer functions predicted by canonical model
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Output impedance Z,,: set sources to zero
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Graphical construction of output impedance

o 9 IZ,l=wL,

IZ. M
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Graphical construction of
filter effective transfer function
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Boost and buck-boost converters: L,=L / D’ 2
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