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ECE 481: Power Electronics

e |Instructor: Prof. Daniel Costinett
— Office: MK502
— Telephone: (865) 974-3572

— Email: dcostine@utk.edu
¢ Please use ECE481 in the subject line for all course-related e-mails.

— Office Hours: T 12:30-2:00pm, F 10:00-11:30am
* TA: Zhuxian "Nicole" Xu

— Email: zxull@utk.edu

— Office: MK517

— Office Hours: MW 3:00-4:00pm




Course Materials

e Textbook:

— Erickson and Maksimovic, Fundamentals of Power
Electronics, second edition, Kluwer Academic Publishers,
ISBN 0-7923-7270-0

— Available through campus bookstore, online vendors, or UT
libraries

¢ Course Website

— http://web.eecs.utk.edu/courses/fall2013/ece481/

— Includes lectures slides, handouts, supplemental notes,
homework assignments, course announcements

Grading

* Homework
— Due at beginning of class on date listed on Lecture Schedule
web page
— Homework counts for 40% of grade
— Collaboration is encouraged on all homework assignments

* Exams
— 2 Midterms: 25% of grade
— 1 Final: 35% of grade
— 1 week, take-home exams
— Absolutely no collaboration allowed on exams




Power Electronics Courses at UTK
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1.1 Introduction to Power Processing
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Change and control voltage magnitude
Possibly control dc voltage, ac current
Produce sinusoid of controllable

magnitude and frequency

Ac-ac cycloconversion: Change and control voltage magnitude

and frequency
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Variations in Load
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Linear Regulator
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High efficiency is essential
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High efficiency leads to low
power loss within converter

Smallsize and reliable operation 04 T
is then feasible

Efficiency is a good measure of
converter performance 02




Example Server Power Distribution

UPS System
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A goal of current converter technology is to construct converters of small
size and weight, which process substantial power at high efficiency




Devices available to the circuit designer
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Magnetics

Linear-
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DT, T,

Switched-mode

Semiconductor devices
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Devices available to the circuit designer
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Semiconductor devices

Signal processing: avoid magnetics




Devices available to the circuit designer
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Power processing: avoid lossy elements

Power loss in an ideal switch
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Switch open: i(n=0
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In either event: p() =v(®) i(1)=0

Ideal switch consumes zero power




Use of a SPDT switch
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Addition of low pass filter

Addition of (ideally lossless) L-C low-pass filter, for
removal of switching harmonics:
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= Choose filter cutoff frequency f, much smaller than switching
frequency f,
= This circuit is known as the “buck converter”
Addition of control system
for regulation of output voltage
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1.2 Several applications of power electronics

|

Power level encodntered in high-efficiency converters
+ less than 1 W in battery-operated portable equipment
« tens, hundreds, or thousands of watts in power supplies for

_computers or office equipment
+ kW to MW in variable-speed motor drives

= 1000 MW _in rectifiers and inverters for utility dc transmission
lines

A laptop computer power supply system
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Power system of an earth-orbiting spacecraft
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Power management in mobile electronics

Battery example: single-cell Lithium-lon
Power distribution: Vg, = 2.7-4.5 V Battery Charger
0.5-V,
BN l l a2 e o . Antenna
.Z* uP/DSP D/A —
core LO
Audio
—lEs — e _
2.7-45V o
Interface [ Baseband digital Analog/RF
25V 25V 25V

* Major power consumers: baseband digital, display, multiple radio channels
¢ Power supply demands: small footprint area & integration, high efficiency over wide range
of loads, power management interface

Future Applications: Hyperloop

Energy per Passenger per Journey (M1}

= Car (30mpg. 2 passengers] ® Matorcycle [S0mpg. 1 passenger)

® Airplane {2011 Transport Energy Data Baok) W Train (2011 Transport Energy Data Book|
u Model 5 (2 passengers) B Passenger Hyperloop (70% occupancy)
= Passenges + Vehicle Hyperloop (70% occupancy)

Figure 1. Energy cost per passenger for a journey between Los Angeles and San Fran
wvarious modes of transport.




Proposed Power Conversion Architecture
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1.3 Elements of power electronics
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Power electronics incorporates concepts from the fields of

analog circuits
electronic devices
control systems
power systems
magnetics

electric machines
numerical simulation
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Part I. Converters in equilibrium

Principles of steady state converter analysis
Steady-state equivalent circuit modeling, losses, and efficiency
Switch realization

The discontinuous conduction mode

@ 0~ @ D

Converter circuits
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Part I. Converters in equilibrium
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Switch realization: semiconductor devices

The IGBT oplfectar Switching loss
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Part II. Converter dynamics and control

Ac modeling
Converter transfer functions
Controller design

Input filter design

conduction mode

i
8.
9.
}l\ Ac and dc equivalent circuit modeling of the discontinuous
}k Current-programmed control
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Part II. Converter dynamics and control

Closed-loop converter system
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Part III. Magnetics

13. Basic magnetics theory
14. Inductor design

15. Transformer design
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Part III. Magnetics
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What is ECOCAR2?
m——pthree-year collegiate automotive engineering competition

* The latest competition series in 23-year history of Advanced
Vehicle Technology Competitions (AVTCs)

* Since 1987, DOE has sponsored AVTCs in partnership with the
domestic auto industry to:
¢ Simulate the development of advanced propulsion and
alternative fuel technologies
¢ Provide the training ground for the next generation of
automotive engineers
* Provide real-world, systems-level engineering challenges for
students using industry-leading engineering tools,
components and hardware and mimic the auto industry’s
vehicle development process

Competition Organizati"bn

e Yearl

¢ Math-based modeling using tools to simulate and select vehicle
architectures

¢ Hardware-in-the-loop to allow for controls strategy testing before any
work on vehicle is started = reduces vehicle development time and
increases safety and security

¢ Teams design ESS systems and powertrain hardware
* Year2

¢ Teams integrate their new subsystem components into the vehicle and
develop a “Mule Vehicle”




—\ehicle Development Process

EE/CS Oppofmtmunities

Electric Powertrain Integration

High Voltage Distribution

Controller Area Network Integration

Controls

Infotainment Hardware/Software Development




Academic Integration

Fall 2013

or

Spring 2014 Possible
Elective
Fall 2013

* Supporting Courses

yduction to Hybr
* ME494 Vehicle Modeling and Simulation

* MES599 Hybrid Vehicle Simulation and Controls
Development

* Networking/Recruiting Opportunities for Students

UTK AVTC History

one design experience for studentsin-MEandtcE———
Over 500 of our students have participated in unique design experiences
UTK has participated for twenty years of these competitions




EcoCAR2 Universities
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ecocar2utk.com
WWWw.ecocar2.org
www.greengarageblog.org

Contact:
Professor Irick dki@utk.edu




