ECE 481: Power Electronics

Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

ECE 481: Power Electronics

• Instructor: Prof. Daniel Costinett

- Office: MK502

Telephone: (865) 974-3572Email: dcostine@utk.edu

Please use ECE481 in the subject line for all course-related e-mails.
 Office Hours: T 12:30-2:00pm, F 10:00-11:30am

TA: Zhuxian "Nicole" Xu
 Email: zxu11@utk.edu

- Office: MK517

- Office Hours: MW 3:00-4:00pm

Course Materials

• Textbook:

- Erickson and Maksimovic, Fundamentals of Power Electronics, second edition, Kluwer Academic Publishers, ISBN 0-7923-7270-0
- Available through campus bookstore, online vendors, or UT libraries

Course Website

- http://web.eecs.utk.edu/courses/fall2013/ece481/
- Includes lectures slides, handouts, supplemental notes, homework assignments, course announcements

Grading

Homework

- Due at beginning of class on date listed on Lecture Schedule web page
- Homework counts for 40% of grade
- Collaboration is encouraged on all homework assignments

Exams

- 2 Midterms: 25% of grade

- 1 Final: 35% of grade

- 1 week, take-home exams

- Absolutely *no collaboration* allowed on exams

Devices available to the circuit designer

Fundamentals of Power Electronics

7

Chapter 1: Introduction

Devices available to the circuit designer

Signal processing: avoid magnetics

Devices available to the circuit designer

Power processing: avoid lossy elements

Power loss in an ideal switch

Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

Ideal switch consumes zero power

D = switch duty cycle $0 \le D \le 1$

 T_s = switching period

 f_s = switching frequency = 1 / T_s

DC component of $v_s(t)$ = average value:

$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) dt = DV_g$$

Addition of low pass filter

Addition of (ideally lossless) *L-C* low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency $f_{\scriptscriptstyle 0}$ much smaller than switching frequency $f_{\scriptscriptstyle \rm S}$
- · This circuit is known as the "buck converter"

1.2 Several applications of power electronics

- · less than 1 W in battery-operated portable equipment
- tens, hundreds, or thousands of watts in <u>power supplies</u> for computers or office equipment
- · kW to MW in variable-speed motor drives
- 1000 MW in rectifiers and inverters for utility dc transmission lines

1.3 Elements of power electronics

Power electronics incorporates concepts from the fields of

- analog circuits
- electronic devices
- control systems
- power systems
- magnetics
- electric machines
- numerical simulation

Part I. Converters in equilibrium

- 2. Principles of steady state converter analysis
- 3. Steady-state equivalent circuit modeling, losses, and efficiency
- 4. Switch realization
- 5. The discontinuous conduction mode
- 6. Converter circuits

Fundamentals of Power Electronics

27

Chapter 1: Introduction

Inductor waveforms Averaged equivalent circuit $V_L(t) \downarrow V_L - V \\ \text{position} \qquad V_L(t) \downarrow V_L - V \\ \text{position} \qquad V_L(t) \downarrow V_L - V \\ \text{DI}, \qquad V_L \qquad V_L \qquad V_L \\ \text{Discontinuous conduction mode} \\ \text{Transformer isolation}$ Fundamentals of Power Electronics Averaged equivalent circuit $V_L(t) \downarrow V_L - V \\ V_L \qquad V_L$

Part II. Converter dynamics and control

- 7. Ac modeling
- 8. Converter transfer functions
- 9. Controller design
- npı

Input filter design

Current-programmed control

Fundamentals of Power Electronics

Part III. Magnetics

- 13. Basic magnetics theory
- 14. Inductor design
- 15. Transformer design

What is EcoCAR2?

- A three year collegiate automotive engineering competition
- The latest competition series in 23-year history of Advanced Vehicle Technology Competitions (AVTCs)
 - Since 1987, DOE has sponsored AVTCs in partnership with the domestic auto industry to:
 - Simulate the development of advanced propulsion and alternative fuel technologies
 - Provide the training ground for the next generation of automotive engineers
 - Provide real-world, systems-level engineering challenges for students using industry-leading engineering tools, components and hardware and mimic the auto industry's vehicle development process

Competition Organization

- Year 1
 - Math-based modeling using tools to simulate and select vehicle architectures
 - Hardware-in-the-loop to allow for controls strategy testing before any work on vehicle is started = reduces vehicle development time and increases safety and security
 - Teams design ESS systems and powertrain hardware
- Year 2
 - Teams integrate their new subsystem components into the vehicle and develop a "Mule Vehicle"
- Year 3
 - Teams refine their vehicle to "Near Showroom" quality and performance

Vehicle Development Process | Mechanical | General | Ge

EE/CS Opportunities

- Electric Powertrain Integration
- High Voltage Distribution
- Controller Area Network Integration
- Controls
- Infotainment Hardware/Software Development

Ø

EcoCAR2 Universities

ecocar2utk.com www.ecocar2.org www.greengarageblog.org

Contact: Professor Irick dki@utk.edu