ECE 481: Power Electronics

Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

ECE 481: Power Electronics

• Instructor: Prof. Daniel Costinett

- Office: MK502

Telephone: (865) 974-3572Email: dcostine@utk.edu

• Please use **ECE481** in the subject line for all course-related e-mails.

- Office Hours: T 12:30-2:00pm, F 10:00-11:30am

• TA: Zhuxian "Nicole" Xu

– Email: zxu11@utk.edu

- Office: MK517

- Office Hours: MW 3:00-4:00pm

Course Materials

Textbook:

- Erickson and Maksimovic, Fundamentals of Power Electronics, second edition, Kluwer Academic Publishers, ISBN 0-7923-7270-0
- Available through campus bookstore, online vendors, or UT libraries

Course Website

- http://web.eecs.utk.edu/courses/fall2013/ece481/
- Includes lectures slides, handouts, supplemental notes, homework assignments, course announcements

Grading

Homework

- Due at beginning of class on date listed on Lecture Schedule web page
- Homework counts for 40% of grade
- Collaboration is encouraged on all homework assignments

Exams

- 2 Midterms: 25% of grade
- 1 Final: 35% of grade
- 1 week, take-home exams
- Absolutely no collaboration allowed on exams

Devices available to the circuit designer

Power processing: avoid lossy elements

Power loss in an ideal switch

Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

Ideal switch consumes zero power

Addition of low pass filter

Addition of (ideally lossless) *L-C* low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency $f_{\scriptscriptstyle 0}$ much smaller than switching frequency $f_{\scriptscriptstyle \rm S}$
- · This circuit is known as the "buck converter"

1.2 Several applications of power electronics

Power levels encountered in high-efficiency converters

- · less than 1 W in battery-operated portable equipment
- tens, hundreds, or thousands of watts in power supplies for computers or office equipment
- · kW to MW in variable-speed motor drives
- 1000 MW in rectifiers and inverters for utility dc transmission lines

Power electronics incorporates concepts from the fields of analog circuits electronic devices control systems power systems magnetics electric machines numerical simulation Fundamentals of Power Electronics 24 Chapter 1: Introduction

Part I. Converters in equilibrium

- 2. Principles of steady state converter analysis
- 3. Steady-state equivalent circuit modeling, losses, and efficiency
- 4. Switch realization
- 5. The discontinuous conduction mode
- 6. Converter circuits

Fundamentals of Power Electronics

27

Chapter 1: Introduction

Part II. Converter dynamics and control 7. Ac modeling 8. Converter transfer functions 9. Controller design 10. Input filter design Ac and dc equivalent circuit modeling of the discontinuous 11. conduction mode 12. Current-programmed control Fundamentals of Power Electronics Chapter 1: Introduction

