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9.7. Summary of key points

1. Negative feedback causes the system output to closely follow the
reference input, according to the gain 1/H(s). The influence on the
output of disturbances and variation of gains in the forward path is
reduced.

2. The loop gain T(s) is equal to the products of the gains in the
forward and feedback paths. The loop gain is a measure of how well
the feedback system works: a large loop gain leads to better
regulation of the output. The crossover frequency f. is the frequency
at which the loop gain T has unity magnitude, and is a measure of
the bandwidth of the control system.




Summary of key points

3. The introduction of feedback causes the transfer functions from
disturbances to the output to be multiplied by the factor 1/(1+7(s)). At
frequencies where T is large in magnitude (i.e., below the crossover
frequency), this factor is approximately equal to 1/7(s). Hence, the
influence of low-frequency disturbances on the output is reduced by a
factor of 1/7(s). At frequencies where T is small in magnitude (i.e.,
above the crossover frequency), the factor is approximately equal to 1.
The feedback loop then has no effect. Closed-loop disturbance-to-
output transfer functions, such as the line-to-output transfer function or
the output impedance, can easily be constructed using the algebra-on-
the-graph method.

4. Stability can be assessed using the phase margin test. The phase of T
is evaluated at the crossover frequency, and the stability of the
important closed-loop quantities 7/(1+7) and 1/(1+7) is then deduced.
Inadequate phase margin leads to ringing and overshoot in the system
transient response, and peaking in the closed-loop transfer functions.

Summary of key points

5. Compensators are added in the forward paths of feedback loops to
shape the loop gain, such that desired performance is obtained.
Lead compensators, or PD controllers, are added to improve the
phase margin and extend the control system bandwidth. P/
controllers are used to increase the low-frequency loop gain, to
improve the rejection of low-frequency disturbances and reduce the
steady-state error.

6. Loop gains can be experimentally measured by use of voltage or
current injection. This approach avoids the problem of establishing
the correct quiescent operating conditions in the system, a common
difficulty in systems having a large dc loop gain. An injection point
must be found where interstage loading is not significant. Unstable
loop gains can also be measured.




Part III. Magnetics

13 Basic Magnetics Theory
14  Inductor Design
15 Transformer Design

Chapter 13 Basic Magnetics Theory

13.1 Review of Basic Magnetics

13.1.1 Basic relationships 13.1.2 Magnetic circuits
13.2 Transformer Modeling
13.2.1 The ideal transformer 13.2.3 Leakage inductances

13.2.2 The magnetizing inductance
13.3 Loss Mechanisms in Magnetic Devices

13.3.1 Core loss 13.3.2 Low-frequency copper loss
13.4 Eddy Currents in Winding Conductors

13.4.1 Skin and proximity effects 13.4.4 Power loss in a layer

13.4.2 Leakage flux in windings 13.4.5 Example: power loss in a
transformer winding

13.4.3 Foil windings and layers  13.4.6 Interleaving the windings
13.4.7 PWM waveform harmonics




Chapter 13 Basic Magnetics Theory

13.5 Several Types of Magnetic Devices, Their B—H Loops, and Core vs.
Copper Loss
13.5.1 Filter inductor 13.5.4 Coupled inductor
13.5.2 AC inductor 13.5.5 Flyback transformer
13.5.3 Transformer
13.6 Summary of Key Points

13.1 Review of Basic Magnetics
13.1.1 Basic relationships

Faraday'’s law

v(t) - » B(1), ()

Terminal Core
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i(f) - » H(1), J(1)

Ampere’s law




Basic quantities

Magnetic quantities
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Electrical quantities
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Magnetic field H and magnetomotive force .#

Magnetomotive force (MMF) .% between points x, and x, is related to

the magnetic field H according to

7= J " H-at
n\'l
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Flux density B and total flux ®

The total magnetic flux ® passing through a surface of area 4, is
related to the flux density B according to

P = B-dA
strface §
Example: uniform flux density of Analogous to electrical conductor
magnitude B current density of magnitude J,
which leads to total conductor
current I
Surface § Surface S
with area A

|\ with area A,
Total flux ®
Flux density B

Total current /
Current density J

Faraday’s law

Voltage v(z) is induced in a
loop of wire by change in
the total flux d(z) passing
through the interior of the
loop, according to

dd(r)

v =—r Flux (7)

For uniform flux distribution,
@(r) = B(1)4, and hence
dB(1)

V(f) =Ar T




Lenz’s law

The voltage v(r) induced by the changing flux ®(z) is of the polarity that
tends to drive a current through the loop to counteract the flux change.

Induced current
Example: a shorted loop of wire

» Changing flux ®(r) induces a
voltage v(r) around the loop

= This voltage, divided by the
impedance of the loop Flux ®(7)
conductor, leads to current i(¢)

« This current induces a flux
@'(1), which tends to oppose
changes in ®(7) H’;‘;Sﬁfg 5

Shorted
loop

Ampere’s law

The net MMF around a closed path is equal to the total current
passing through the interior of the path:

H -d = total current passing through interior of path

closed path

Example: magnetic core. Wire
carrying current i(t) passes

« |llustrated path follows

+ For uniform magnetic field

through core window. {0

L1

magnetic flux lines
around interior of core

strength H(r), the integral (MMF)
is H(n(,,. So

F(ty=H®L,, =i{)

Magnetic path
length €,




Ampere’s law: discussion

* Relates magnetic field strength H{(¢) to winding current i(z)
« We can view winding currents as sources of MMF

* Previous example: total MMF around core, .#(r) = H(2),, is equal to

the winding current MMF (1)

m?

The total MMF around a closed loop, accounting for winding current
MMF’s, is zero

Core material characteristics:
the relation between B and H

Free space A magnetic core material
B B=uH B
"
u
/f
H
1) i
'y
/
1, = permeability of free space Highly nonlinear, with hysteresis

= 4n - 107 Henries per meter and saturation




Piecewise-linear modeling
of core material characteristics

No hysteresis or saturation Saturation, no hysteresis
B B=uH B
w=uug B~
=R, By u
H H
T Bml
Typlcal B, = 103 to 105 Typlcal Bmf = 0.31t00.5T, ferrite

0.5 to 1T, powdered iron
1 to 2T, iron laminations

Units

Table 12.1. Units for magnetic quantities

quantity MKS unrationalized cgs conversions
core material equation B=pou H B=u H
B Tesla Gauss IT = 10'G
H Ampere / meter Oersted 1A/m =41-10™ Oe
] Weber Maxwell 1Wb = 10" Mx

IT = 1Wb/ m’




Example: a simple inductor

Faraday’s law: D
) ( Core area
For each turn of i(t) — A,

wire, we can write oL ] \>
n g ~N
dPo(t) V(D) !
O dr _ lums N Core
permeability
u
Total winding voltage is core

v(t)=nv,,, (t)=n d(gt(t)

Express in terms of the average flux density B(z) = #(1)/4,

dB(t)
dt

v(t)=nA,

Inductor example: Ampere’s law

Choose a closed path
which follows the average

magnetic field line around i) " _
the interior of the core. 1 i pailfneuc
Length of this path is . turns ] ] pnh e
called the mean magnetic

path length (.

For uniform field strength
H(?), the core MMF
around the pathis H (.
Winding contains » turns of wire, each carrying current i(¢). The net current
passing through the path interior (i.e., through the core window) is ni(r).

From Ampere’s law, we have
H(n L, =ni()




Inductor example: core material model

for H = B, /u

B={ uwH for ‘ H | < B, /u M

forH<-B,_

sal W

1T Psar

Find winding current at onset of saturation:
substitute i =/, and H = B, /u into

equation previously derived via Ampere’s
law. Result is

Bl
l\‘l{f = i_;firl

Electrical terminal characteristics

We have:
B, for H =z B,,/u
dB z sai sat’ v
wi)=nA, # H(1) £, = n i(1) B={ uH for|H|<B,,/u
- By, forH=-B,/u
Eliminate B and A, and solve for relation between v and i. For | i| <1,
dH (1) WA, di(f)
v(t) =unA ., — — ¢
() =unA =5 v(t) (. ar
which is of the form
1 2
v(t)=L % with L= Wz_A
—an inductor

For |i|>1, the flux density is constant and equal to B, . Faraday’s
law then predicts

v(t)=nA, L =0 —saturation leads to short circuit

dt




13.1.2 Magnetic circuits

<— Length {—
Uniform flux and ++— MMF % —» _ Area
magnetic field inside
a rectangular
element: Flux

MMPF between ends of
element is

F =HL
Since H=B/pand B=® /4, we can express 4 as

T =DR with .%) — [
wA

A corresponding model: + T _

_b_l\/\,_
D B

# = reluctance of element

Magnetic circuits: magnetic structures composed of
multiple windings and heterogeneous elements

* Represent each element with reluctance
* Windings are sources of MMF
* MMF — voltage, flux — current

» Solve magnetic circuit using Kirchoff's laws, etc.




Magnetic analog of Kirchoff’s current law

Divergence of B=0

Flux lines are continuous
and cannot end

Total flux entering a node
must be zero

Physical structure "}'Od@
, / ,
— —

"

Node O, =D, + D,

Magnetic circuit

@,

"L.ae

Magnetic analog of Kirchoff’s voltage law

Follows from Ampere’s law:

H -d = total current passing through interior of path

closed path

Left-hand side: sum of MMF’s across the reluctances around the

closed path

Right-hand side: currents in windings are sources of MMF’s. An n-turn
winding carrying current i(7) is modeled as an MMF (voltage) source,

of value ni(1).

Total MMF’s around the closed path add up to zero.




Example: inductor with air gap

i(r)
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permeability w

D

EEme—

Cross-sectional

>
— area A,

+ N
n
(1) turns : :; _L Air gap
- S Tk
/| Magnetic path
length €,
Magnetic circuit model
Core
permeability p 7,
[ e N
. Cross-sectional ’ﬁlr-
i) S’ area A, 4'A%
+ +

n d
V() turns q

i

A

_l_ Air gap
T &

I~ Magnetic path
length {,

nir) (j) @ S, #,

4
R =—x
c MAC
R, = b




Solution of model

Core

permeability n T
[ + c -
. Cross-sectional &,
i area A, AN
¥ N .
V@) turns N _L Air gap
- B nit) :) @ sa, 7,
Magnetic path
length €, =
Faraday'slaw:  v(=n f"'j;(r) ni=® [,%’r_ + .‘/i"‘,)
! P
Substitute for @: = 7> __ dilt) “ uA,
R+ R, dt éé‘
. . R =—2
Hence inductance is LEENTRY:
2
L=—""__
R+ R,
Effect of air gap
| — il e
m—(D(-Ar+.ﬁx) D =BA_,
s ”n—z) B\(lIAA‘ o 1 ]
H é + JIA, //?( i
® =B A 1
™ B, Cx=>
B, A, | |
I.uu = wffl ‘ ('%,v + '#X) i § _
. nlxml sarz i € H .
Effect of air gap:
» decrease inductance
+» increase saturation
current
i e lace BmﬂA{'
+ inductance is less b

dependent on core
permeability




13.2 Transformer modeling

Two windings, no air gap: By
¢ i o, { o DD
9

/ﬁ’: et + ]
nAa, By

_ . ) "0 urns ]

S = A+ Nyl = b

+

L&)
wrns Y20

Core

. .
DR =ni, + iy,

Magnetic circuit model:

iy

) ity

13.2.1 The ideal transformer

In the ideal transformer, the core
reluctance # approaches zero.

MMF % = @ & also approaches iy c+
zero. We then obtain ™

0=ni, + nyi,

Moly

Also, by Faraday’s law,

Y-

Eliminate @ : . .
de_Y _% " H
dr — n - My

Ideal transformer equations: - -

v, v . . 2
L =22 and  nyi, +n,i,=0 Ideal

Ry Ry




13.2.2 The magnetizing inductance

For nonzero core reluctance, we obtain

DA =ni,+n,, with v,=n, a('i_?

e iy
Eliminate ®:
2, n
1 : 2
Vi == i+ ==
1 R dr| n, 2
. . . iy .
This equation is of the form i 7, b2 " i,
di, e - -
vi=Ly ——
1T gy i+ Z—? i
with v, ni H
Ly=—%
2 M >
o= /
MR
: 5 Ry . =
,M=E]+n—12 Ideal

Magnetizing inductance: discussion

» Models magnetization of core material
« Areal, physical inductor, that exhibits saturation and hysteresis
« If the secondary winding is disconnected:

we are left with the primary winding on the core

primary winding then behaves as an inductor

the resulting inductor is the magnetizing inductance, referred to
the primary winding

* Magnetizing current causes the ratio of winding currents to differ
from the turns ratio




Transformer saturation

Saturation occurs when core flux density B(¢) exceeds saturation
flux density B,,.

When core saturates, the magnetizing current becomes large, the
impedance of the magnetizing inductance becomes small, and the
windings are effectively shorted out.

Large winding currents i,(7) and i,(¢) do not necessarily lead to
saturation. If

O=ni, +ni,

then the magnetizing current is zero, and there is no net
magnetization of the core.

Saturation is caused by excessive applied volt-seconds

Saturation vs. applied volt-seconds

|3
o

Magnetizing current

A =

nyin,

b

depends on the integral F
of the applied winding
voltage:

iM(r)=#jvl(r)dr

i+

2
n, b2

Flux density is
proportional:

B(t) = ﬁ J v(£)dt

are too large, where
i

n =_[2v,(r)dr
f|

limits of integration chosen to coincide with
positive portion of applied voltage waveform

Ideal

Flux density becomes large, and core
saturates, when the applied volt-seconds &,




13.2.3 Leakage inductances

iy(1)

)

£
v By

[

C

T~
(N

i\(n) T

Vi

L) e

i(0)

Va4

v 0)

Transformer model, including leakage inductance

Terminal equations can

b 5 in the f Ly n,in, Ly iy
e written in the form - T e\ ;
. iy
v [_[LnLiz| d| 0@ n -
va(1) Ly Ly | dit|ixt) v, Ly=73-Ly

mutual inductance:

nn, n,
Lio=—Z"=m Lu

primary and secondary
self-inductances:

Ideal
. ) Ly,
effective turns ratio  #.= L,
coupling coefficient k= Lip




13.3 Loss mechanisms in magnetic devices

Low-frequency losses:
Dc copper loss
Core loss: hysteresis loss

High-frequency losses: the skin effect
Core loss: classical eddy current losses
Eddy current losses in ferrite cores

High frequency copper loss: the proximity effect
Proximity effect: high frequency limit

MMF diagrams, losses in a layer, and losses in basic multilayer
windings

Effect of PWM waveform harmonics

13.3.1 Core loss

Core area
L

-

Core
permeability
u

Energy per cycle 1 flowing into n- o
turn winding of an inductor, i) N
excited by periodic waveforms of + TN
frequency /: O g :
— b
W= j w(t)i(t)dt
one cycle core
Relate winding voltage and current to core B
and H via Faraday’s law and Ampere’s law:
dB(t
v(t)=nA, % H(DE,, = ni(t)

Substitute into integral:

%y [ (o 280 0

one cycle

=(AL )J HdB

cin
one cycle




Core loss: Hysteresis loss

B 4

W=(AL,) f HdB

one cyele

Area

HdB

one cycle

The term A4 ¢, is the volume of H

cm
the core, while the integral is
the area of the B-H loop.

(energy lost per cycle) = (core volume) (area of 5—H loop)

Py = (f) (Agém) HdB Hysteresis loss is directly proportional
to applied frequency

one cycle

Modeling hysteresis loss

» Hysteresis loss varies directly with applied frequency

» Dependence on maximum flux density: how does area of B—H loop
depend on maximum flux density (and on applied waveforms)?
Empirical equation (Steinmetz equation):

Py =K, fB,.(core volume)

max

The parameters K, and « are determined experimentally.

Dependence of P,,on B, . is predicted by the theory of magnetic

domains.

max




Core loss: eddy current loss

Magnetic core materials are reasonably good conductors of electric
current. Hence, according to Lenz’s law, magnetic fields within the
core induce currents (“eddy currents”) to flow within the core. The
eddy currents flow such that they tend to generate a flux which
opposes changes in the core flux ®(7). The eddy currents tend to
prevent flux from penetrating the core.

Eddy current
loss i2(H)R

Modeling eddy current loss

Ac flux ®(r) induces voltage v(¢) in core, according to Faraday's law.
Induced voltage is proportional to derivative of ®(s). In
consequence, magnitude of induced voltage is directly proportional
to excitation frequency f.

» If core material impedance Z is purely resistive and independent of
frequency, Z = R, then eddy current magnitude is proportional to
voltage: i(r) = v(#)/R. Hence magnitude of i(r) is directly proportional
to excitation frequency f.

« Eddy current power loss i2(1)R then varies with square of excitation
frequency f.

Classical Steinmetz equation for eddy current loss:
Py =K, f*B., (core volume)

Ferrite core material impedance is capacitive. This causes eddy
current power loss to increase as /4.




Total core loss: manufacturer’s data

Ferrite core Fimmm ;A . .
: 7 =7 Empirical equation, at a
material 1t )
/ S ’,-’ fixed frequency:
- y
% / / él Pfﬂsze(AB)ﬁAc[j’m
v
g 0.1 A - f—
_g: Il 7 7 Ig&;
2 / /
£ 7 / PN
3 / Favivi /*r
0.01
0.01 0.1 0.3
AB, Tesla
Core materials
Core type B, Relative core loss Applications
Laminations 1.5-2.0T high 50-60 Hz transformers,
iron, silicon steel inductors
Powdered cores 0.6-0.8T medium 1 kHz transformers,
powdered iron, 100 kHz filter inductors
molypermalloy
Ferrite 0.25-05T low 20kHz - 1 MHz
Manganese-zinc, transformers,

Nickel-zinc ac inductors




13.3.2 Low-frequency copper loss

DC resistance of wire
2

z
AH‘
where 4 is the wire bare cross-sectional area, and
{, is the length of the wire. The resistivity p is equal
to 1.724-10-° Q cm for soft-annealed copper at room

temperature. This resistivity increases to
2.3-10°Q cmat 100°C.

R=p

i(n

The wire resistance leads to a power loss of
P,=1: R

rms

13.4 Eddy currents in winding conductors
13.4.1 Intro to the skin and proximity effects

Current
densiry

Wire

4

currents

Eddy
currents

i(f)




For sinusoidal currents: current density is an exponentially decaying
function of distance into the conductor, with characteristic length 6

Penetration depth 6

known as the penetration depth or skin depth.

Penetration
depth &, cm

For copper at room

temperature:
7.5
d=-"=cm
vf

Wire diameter

0.1 E #20 AWG
""‘::‘--J'-‘.’Pb E #30 AWG
25 | E
C T E
0.01 - #40 AWG
0.001
10 kHz 100 kHz 1 MHz

Frequency




