Lecture 25: Transformer Design; Further Topics

ECE 481: Power Electronics
Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Announcements

- ECE 482: Power Electronic Circuits
- http://oira.tennessee.edu/sais/ (7 students missing)
- Midterm exam:
 - Available after class today
 - Due anytime before 12:15pm on Wednesday, Dec 11^{th}

IN MK 502

Filter inductor, cont.

- Negligible core loss, negligible proximity loss
- Loss dominated by dc copper loss
- ځ
- Flux density chosen simply to avoid saturation
- · Air gap is employed
- Could use core materials having high saturation flux density (and relatively high core loss), even though converter switching frequency is high

Chapter 14 Inductor Design

- 14.1 Filter inductor design constraints
- 14.2 A step-by-step design procedure
- 14.3 Multiple-winding magnetics design using the K_g method
- 14.4 Examples
- 14.5 Summary of key points

14.1 Filter inductor design constraints

i(t) = R

Objective:

Design inductor having a given inductance L, which carries worst-case current I_{\max} without saturating, and which has a given winding resistance R, or, equivalently, exhibits a worst-case copper loss of

$$P_{cu} = I_{rms}^{2} R$$

Example: filter inductor in CCM buck converter

14.2 A step-by-step procedure

The following quantities are specified, using the units noted:

Wire resistivity ρ (Ω -cm)

Peak winding current I_{max} (A)

Inductance L (H)

Winding resistance R (Ω)

Winding fill factor K_u Core maximum flux density B_{max} (T)

The core dimensions are expressed in cm:

Core cross-sectional area A_c (cm²) Core window area W_A (cm²) Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate factors be added to the design equations.

Chapter 15 Transformer Design

Some more advanced design issues, not considered in previous chapter:

- Inclusion of core loss
- Selection of operating <u>flux</u> density to optimize total loss
- Multiple winding design: as in the coupled-inductor case, allocate the available window area among several windings
- A transformer design procedure
- How switching frequency affects transformer size

15.1 Transformer Design: Basic Constraints

Core loss

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Typical value of β for ferrite materials: 2.6 or 2.7

 ΔB is the peak value of the ac component of B(t), *i.e.*, the peak ac flux density

So increasing ΔB causes core loss to increase rapidly

This is the first constraint

Total core loss: manufacturer's data

Empirical equation, at a fixed frequency:

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Flux density

Constraint #2

Flux density B(t) is related to the applied winding voltage according to Faraday's Law. Denote the voltseconds applied to the primary winding during the positive portion of $v_1(t)$ as λ_1 :

$$\lambda_1 = \int_{t_1}^{t_2} v_1(t) dt$$

This causes the flux to change from its negative peak to its positive peak. From Faraday's law, the peak value of the ac component of flux density is

$$\Delta B = \frac{\lambda_1}{2n_1 A_c}$$

To attain a given flux density, the primary turns should be chosen according to

$$n_1 = \frac{\lambda_1}{2\Delta B A_c}$$

Copper loss

Constraint #3

- Allocate window area between windings in optimum manner, as described in previous section
- · Total copper loss is then equal to

$$P_{cu} = \frac{\rho(MLT)n_1^2 I_{tot}^2}{W_A K_u}$$

with

$$I_{tot} = \sum_{j=1}^{k} \frac{n_j}{n_1} I_j$$

Eliminate n_1 , using result of previous slide:

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{\Delta B}\right)^2$$

Note that copper loss decreases rapidly as ΔB is increased

Total power loss

$$4. P_{tot} = P_{cu} + P_{fe}$$

There is a value of ΔB that minimizes the total power loss

$$P_{tot} = P_{fe} + P_{cu}$$

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{\Delta B}\right)^2$$

Total loss

Substitute optimum ΔB into expressions for P_{cu} and P_{fe} . The total loss is:

$$P_{tot} = \left[A_c \ell_m K_{fe}\right]^{\left(\frac{2}{\beta+2}\right)} \left[\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u} \frac{(MLT)}{W_A A_c^2}\right]^{\left(\frac{\beta}{\beta+2}\right)} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]$$

Rearrange as follows:

$$\frac{W_{A}\left(A_{c}\right)^{\left(2(\beta-1)/\beta\right)}}{(MLT)\ell_{m}^{\left(2/\beta\right)}}\left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)}+\left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]^{-\left(\frac{\beta+2}{\beta}\right)}=\frac{\rho\lambda_{1}^{2}I_{tot}^{2}K_{fe}^{\left(2/\beta\right)}}{4K_{u}\left(P_{tot}\right)^{\left((\beta+2)/\beta\right)}}$$

Left side: terms depend on core geometry

Right side: terms depend on specifications of the application

The core geometrical constant K_{gfe}

Define

$$K_{gfe} = \frac{W_A \left(A_c\right)^{\left(2(\beta-1)/\beta\right)}}{(MLT)\ell_m^{\left(2/\beta\right)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$

Design procedure: select a core that satisfies

$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u (P_{tot})^{((\beta+2)/\beta)}}$$

Appendix D lists the values of K_{gfe} for common ferrite cores

 $K_{g/e}$ is similar to the K_g geometrical constant used in Chapter 14:

- K_g is used when B_{max} is specified
- K_{gfe} is used when ΔB is to be chosen to minimize total loss

15.2 Step-by-step transformer design procedure

The following quantities are specified, using the units noted: Wire effective resistivity $\rho \qquad \qquad (\Omega\text{-cm})$

Total rms winding current, ref to pri I_{tot} (A) Desired turns ratios $n_2/n_1, n_3/n_1$, etc.

Applied pri volt-sec λ_1 (V-sec) Allowed total power dissipation P_{tot} (W)

Winding fill factor K_u Core loss exponent β

Core loss coefficient $K_{f_{\alpha}}$ (W/cm³T^{β})

Other quantities and their dimensions:

Peak ac flux density

(T)

Application of ECE481 Theory

Example: Low-Power AC Adapters

Apple "Ultracompact USB Power Adapter"

Design Constraints:

- Single converter needs power stage which can operate over wide input voltage range
- For V_{dc} = +5 V (USB output) need very large step-down capability (M = 0.018)
- Isolation may be necessary for safety

Goals:

- Produce regulated DC Voltage from universal input (85 to 276 Vrms, 47-63 Hz)
- Maintain high power factor / Low EMI
- High efficiency to allow small size

Fairchild Semi, "Design Guideline of Single-Stage Flyback AC-DC Converter Using FAN7530 for LFD Lighting"

Flyback Implementation

- Flyback selected as a simple, low part-count topology
- Used almost exclusively in Ac-to-LVDC applications at power levels less than 100W
- DCM may be used for reduced diode RR and increased f_s
- Pulsating input current requires filtering
- If unity power factor is obtained, significant output ripple results

Fairchild Semi, "Design Guideline of Single-Stage Flyback AC-DC Converter Using

Example 2: VRM Design

Goals:

- Produce tightly regulated <u>0.8-1.4 V</u> output voltage from 12 V +5%/-8%
- Maintain very strict regulation

Design Constraints:

- < 10mV ripple (pk-to-pk)
- < 50mV deviation at full load current step
- 120 A/ns_output current slew rate
- 150 A peak output current
- Regulation down to 500mA
- Voltage variation in 6.25 mV steps

Traditional Approach: High-Current Buck Converter

- Fig. 1.6. A single-phase buck converter for a Pentium III processor.
- Buck is simplest topology which can meet required step-down
 - Multiple devices in parallel used to reduce (dominant) conduction losses
- Large inductor needed to reduce ripple
- Large output cap needed for ripple; transient hold-up
- Switching frequency increased to reduce ripple; still well-below processor speed

K Yao, "High-Frequency and High-Performance VRM Design for the Next Generations of Processors", 2004

Today's Approach: Multiphase Buck

Fig. 1.7. A multiphase buck converter for a Pentium III processor.

- Multiphase to distribute the large output current
- Interleaving to cancel current ripple and to improve transient response
- 12V-input voltage bus to reduce the input bus conduction loss
- Multiphase controller with switching frequency up to 1 MHz
- Commonly, 300KHz to 500KHz switching frequency to achieve reasonable efficiency with 30V vertical trench MOSFETs
- Several electrolytic bulk capacitors in parallel to limit the transient voltage spikes; ceramics in parallel for HF

K Yao, "High-Frequency and High-Performance VRM Design for the Next Generations of Processors", 2004

Issues:

- Small duty cycles $(D \sim 1/12)$ cause poor device utilization
- Large size due to many phases despite high switching frequency
- C_{out} limited by holdup times (large signal); further increase in f_s not beneficial
- Noneven slew rates:

$$\Delta I_{\text{max}} = \frac{12 - V_{out}}{L} \qquad \Delta I_{\text{min}} = \frac{-V_{out}}{L}$$

Balancing between phases needs to be enforced via control

Fig. 9. Multiphase tapped-inductor buck converter with an additional active

P Xu, J Wei, and F Lee, "Multiphase Coupled-Buck Converter—A Novel High Efficient 12 V Voltage Regulator Module"

Further Topics In Power Electronics

Input Filter Design

- · Filter can seriously degrade converter control system behavior
- Use extra element theorem to derive conditions which ensure that converter dynamics are not affected by input filter
- · Must design input filter having adequate damping

Damped Input Filters

Design criteria derived via Extra Element theorem:

Two-section damped input filter design:

$$\left\| Z(j\omega) \right\| \gg \left\| Z_N(j\omega) \right\|$$

$$\left\| Z(j\omega) \right\| \gg \left\| Z_D(j\omega) \right\|$$

Thank you for a Great Semester Good Luck with Finals!