Lecture 4: Steady-State Averaged Modeling

ECE 481: Power Electronics Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

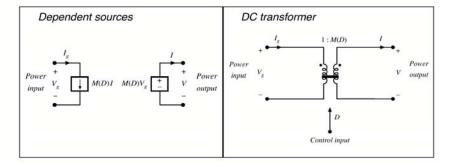
Ideal Transformer Model

Simplifying Circuits With Ideal XF

Simplifying Circuits With Ideal XF

Simplifying Circuits With Ideal XF

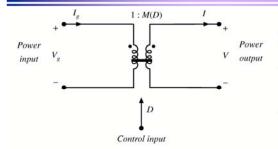
3.1. The dc transformer model


Basic equations of an ideal dc-dc converter: $P_{in} = P_{out} \qquad (\eta = 100\%) \qquad input \qquad V_g \qquad v_g \qquad V_g = VI \qquad (ideal conversion ratio)$ $V = M(D) \ V_g \qquad (ideal conversion ratio)$ $I_g = M(D) \ I$ Control input

These equations are valid in steady-state. During transients, energy storage within filter elements may cause $P_{\it in} \neq P_{\it out}$

Fundamentals of Power Electronics

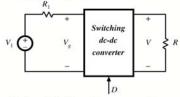
Equivalent circuits corresponding to ideal dc-dc converter equations


$$P_{in} = P_{out}$$
 $V_g I_g = V I$ $V = M(D) V_g$ $I_g = M(D) I$

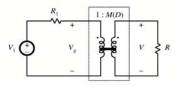
Fundamentals of Power Electronics

Chapter 3: Steady-state equivalent circuit modeling, ...

The DC transformer model

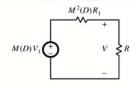

Models basic properties of ideal dc-dc converter:

- conversion of dc voltages and currents, ideally with 100% efficiency
- conversion ratio M controllable via duty cycle
- Solid line denotes ideal transformer model, capable of passing dc voltages and currents
- Time-invariant model (no switching) which can be solved to find dc components of converter waveforms


Fundamentals of Power Electronics

Example: use of the DC transformer model

1. Original system



2. Insert dc transformer model

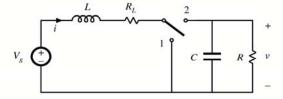
Fundamentals of Power Electronics

3. Push source through transformer

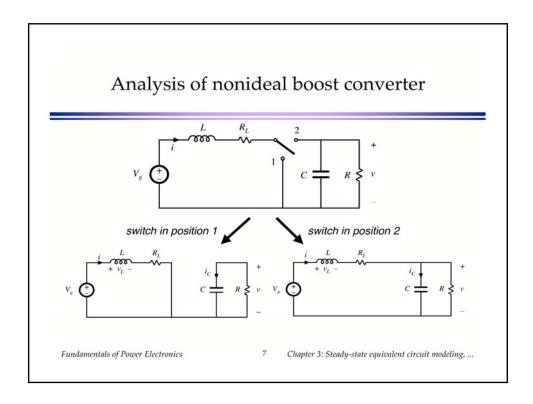
4. Solve circuit

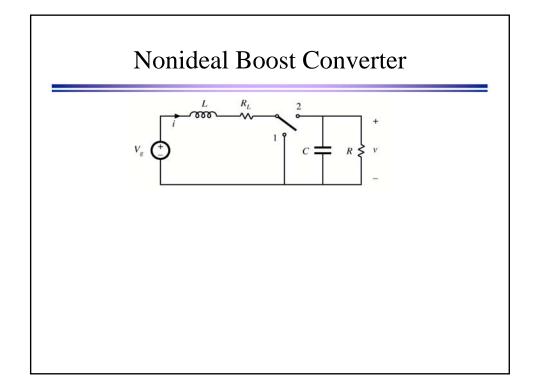
$$V = M(D) V_1 \frac{R}{R + M^2(D) R_1}$$

Chapter 3: Steady-state equivalent circuit modeling, ...


3.2. Inclusion of inductor copper loss

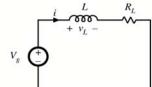
Dc transformer model can be extended, to include converter nonidealities.

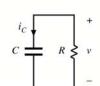

Example: inductor copper loss (resistance of winding):


$$R_L$$

Insert this inductor model into boost converter circuit:

Fundamentals of Power Electronics





Circuit equations, switch in position 1

Inductor current and capacitor voltage:

$$v_L(t) = V_g - i(t) R_L$$

$$i_C(t) = -v(t) / R$$

Small ripple approximation:

$$v_L(t) = V_g - I R_L$$
$$i_C(t) = -V / R$$

Fundamentals of Power Electronics

8 Chapter 3: Steady-state equivalent circuit modeling, ...

Circuit equations, switch in position 2

$$V_{g} \stackrel{i}{\rightleftharpoons} V_{L} \stackrel{R_{L}}{\longrightarrow} V_{L} \stackrel{i_{C}}{\longrightarrow} R \stackrel{i_{C}}{\rightleftharpoons} V_{L} \stackrel{i_{C}}{\longrightarrow} V_{L} \stackrel{i_{C}}{\longrightarrow}$$

$$\begin{split} v_L(t) &= V_g - i(t) \; R_L - v(t) \approx V_g - I \; R_L - V \\ i_C(t) &= i(t) - v(t) \; / \; R \approx I - V \; / \; R \end{split}$$

Fundamentals of Power Electronics

Inductor voltage and capacitor current waveforms

 $v_L(t)$

 $i_C(t)$

 $V_g - IR_L$

DT.

-V/R

Average inductor voltage:

$$\begin{split} \left\langle v_t(t) \right\rangle &= \frac{1}{T_s} \int_0^{\tau_s} v_t(t) dt \\ &= D(V_g - I \, R_t) + D'(V_g - I \, R_t - V) \end{split}$$

Inductor volt-second balance:

$$0 = V_g - I R_L - D'V$$

Average capacitor current:

$$\langle i_c(t) \rangle = D \left(- V / R \right) + D' \left(I - V / R \right)$$

Capacitor charge balance:

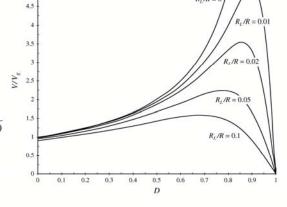
$$0 = D'I - V / R$$

Fundamentals of Power Electronics

Chapter 3: Steady-state equivalent circuit modeling, ...

 $V_g - IR_L - V$

I - V/R


Solution for output voltage

We now have two equations and two unknowns:

$$0 = V_g - I R_L - D'V$$
$$0 = D'I - V / R$$

Eliminate *I* and solve for *V*:

$$\frac{V}{V_g} = \frac{1}{D'} \frac{1}{(1 + R_L / D'^2 R)}$$

Fundamentals of Power Electronics

3.3. Construction of equivalent circuit model

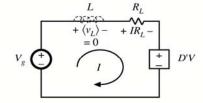
Results of previous section (derived via inductor volt-sec balance and capacitor charge balance):

$$\langle v_L \rangle = 0 = V_g - I R_L - D'V$$

$$\langle i_C \rangle = 0 = D'I - V / R$$

View these as loop and node equations of the equivalent circuit. Reconstruct an equivalent circuit satisfying these equations

Fundamentals of Power Electronics


1

Chapter 3: Steady-state equivalent circuit modeling, ...

Inductor voltage equation

$$\langle v_L \rangle = 0 = V_g - I R_L - D'V$$

- Derived via Kirchhoff's voltage law, to find the inductor voltage during each subinterval
- Average inductor voltage then set to zero
- This is a loop equation: the dc components of voltage around a loop containing the inductor sum to zero

- IR_L term: voltage across resistor of value R_L having current I
- D'V term: for now, leave as dependent source

Fundamentals of Power Electronics

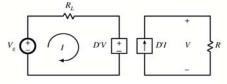
13

Capacitor current equation

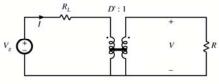
 $\langle i_c \rangle = 0 = D'I - V / R$

- Derived via Kirchoff's current law, to find the capacitor current during each subinterval
- Average capacitor current then set to zero
- This is a node equation: the dc components of current flowing into a node connected to the capacitor sum to zero

 $\begin{array}{c|c} V/R & Node \\ & \searrow & V/R \\ \hline & & \downarrow & + \\ & & = 0 \\ \hline & & & & \downarrow \\ D'I & \uparrow & C & V & \geqslant R \\ \hline \end{array}$


- V/R term: current through load resistor of value R having voltage V
- D'I term: for now, leave as dependent source

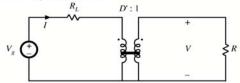
Fundamentals of Power Electronics


14 Chapter 3: Steady-state equivalent circuit modeling, ...

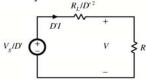
Complete equivalent circuit

The two circuits, drawn together:

The dependent sources are equivalent to a D': 1 transformer:


Fundamentals of Power Electronics

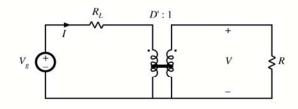
Dependent sources and transformers


- · sources have same coefficient
- reciprocal voltage/current dependence

Solution of equivalent circuit

Converter equivalent circuit

Refer all elements to transformer secondary:


Fundamentals of Power Electronics

Solution for output voltage using voltage divider formula:

$$V = \frac{V_s}{D'} \frac{R}{R + \frac{R_L}{{D'}^2}} = \frac{V_s}{D'} \frac{1}{1 + \frac{R_L}{{D'}^2 R}}$$

Chapter 3: Steady-state equivalent circuit modeling, ...

Solution for input (inductor) current

$$I = \frac{V_g}{D'^2 R + R_L} = \frac{V_g}{D'^2} \frac{1}{1 + \frac{R_L}{D'^2 R}}$$

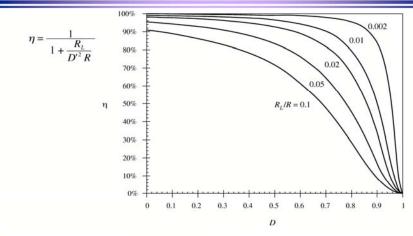
Fundamentals of Power Electronics

Solution for converter efficiency

$$P_{in} = (V_g) (I) \\ P_{out} = (V) (D'I)$$

$$V_g \stackrel{+}{\longleftarrow} V$$

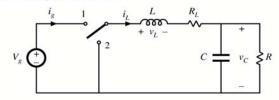
$$R$$


$$\eta = \frac{P_{\scriptscriptstyle out}}{P_{\scriptscriptstyle in}} = \frac{(V)\;(D'I)}{(V_{\scriptscriptstyle g})\;(I)} = \frac{V}{V_{\scriptscriptstyle g}}\;D'$$

$$\eta = \frac{1}{1 + \frac{R_L}{D^{*2}R}}$$

Fundamentals of Power Electronics

18 Chapter 3: Steady-state equivalent circuit modeling, ...


Efficiency, for various values of R_L

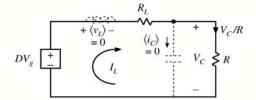
Fundamentals of Power Electronics

3.4. How to obtain the input port of the model

Buck converter example —use procedure of previous section to derive equivalent circuit

Average inductor voltage and capacitor current:

$$\langle v_L \rangle = 0 = DV_g - I_L R_L - V_C$$
 $\langle i_C \rangle = 0 = I_L - V_C / R$

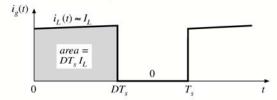

$$\langle i_C \rangle = 0 = I_L - V_C / R$$

Fundamentals of Power Electronics

Chapter 3: Steady-state equivalent circuit modeling, ...

Construct equivalent circuit as usual

$$\langle v_L \rangle = 0 = DV_g - I_L R_L - V_C$$


What happened to the transformer?

· Need another equation

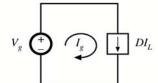
Fundamentals of Power Electronics

Modeling the converter input port

Input current waveform $i_{\varrho}(t)$:

Dc component (average value) of $i_g(t)$ is

$$I_g = \frac{1}{T_s} \int_0^{T_s} i_g(t) dt = DI_L$$

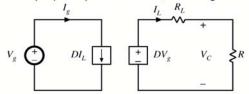

Fundamentals of Power Electronics

22

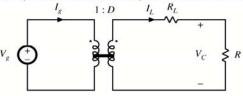
Chapter 3: Steady-state equivalent circuit modeling, ...

Input port equivalent circuit

$$I_g = \frac{1}{T_s} \int_0^{T_s} i_g(t) dt = DI_L$$



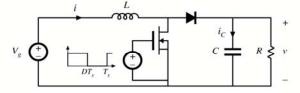
Fundamentals of Power Electronics


23

Complete equivalent circuit, buck converter

Input and output port equivalent circuits, drawn together:

Replace dependent sources with equivalent dc transformer:



Fundamentals of Power Electronics

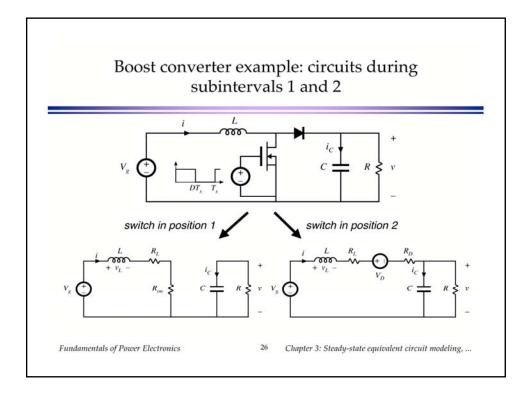
24 Chapter 3: Steady-state equivalent circuit modeling, ...

3.5. Example: inclusion of semiconductor conduction losses in the boost converter model

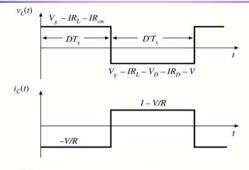
Boost converter example

Models of on-state semiconductor devices:

MOSFET: on-resistance R_{on}


Diode: constant forward voltage V_D plus on-resistance R_D

Insert these models into subinterval circuits


Fundamentals of Power Electronics

25

Modeling of component conduction losses

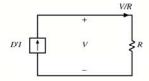
Average inductor voltage and capacitor current

$$\left\langle v_L \right\rangle = D(V_g - IR_L - IR_{on}) + D'(V_g - IR_L - V_D - IR_D - V) = 0$$

$$\left\langle i_{\scriptscriptstyle C} \right\rangle = D(-V/R) + D'(I-V/R) = 0$$

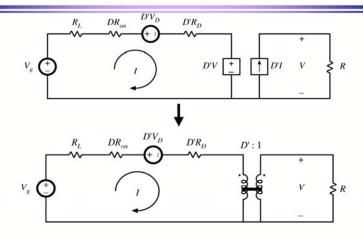
Fundamentals of Power Electronics

27 Chapter 3: Steady-state equivalent circuit modeling, ...

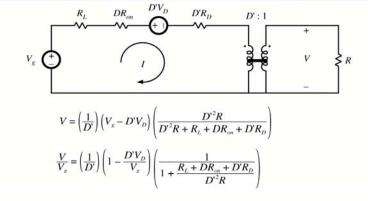

Construction of equivalent circuits

$$V_g - IR_L - IDR_{on} - D'V_D - ID'R_D - D'V = 0$$

$$R_L \qquad DR_{on} \qquad D'V_D \qquad D'R_D$$


$$+ IR_L - + IDR_{on} - \qquad + ID'R_D - \qquad \qquad + D'V$$

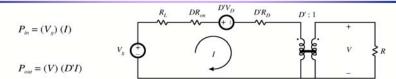
$$D'I - V/R = 0$$



Fundamentals of Power Electronics

Complete equivalent circuit

Solution for output voltage



Fundamentals of Power Electronics

Fundamentals of Power Electronics

Chapter 3: Steady-state equivalent circuit modeling, ...

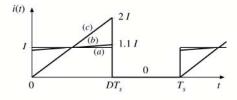
Solution for converter efficiency

$$\eta = D' \frac{V}{V_g} = \frac{\left(1 - \frac{D'V_D}{V_g}\right)}{\left(1 + \frac{R_L + DR_{on} + D'R_D}{D'^2R}\right)}$$

Conditions for high efficiency:

$$V_g/D' \gg V_D$$

 $D'^2R \gg R_L + DR_{on} + D'R_D$


Fundamentals of Power Electronics

31 Chapter 3: Steady-state equivalent circuit modeling, ...

Accuracy of the averaged equivalent circuit in prediction of losses

- Model uses average currents and voltages
- To correctly predict power loss in a resistor, use rms values
- Result is the same, provided ripple is small

MOSFET current waveforms, for various ripple magnitudes:

Inductor current ripple	MOSFET rms current	Average power loss in R _{on}
(a) $\Delta i = 0$	1 / D	$D I^2 R_{oa}$
(b) $\Delta i = 0.1 I$	$(1.00167)I\sqrt{D}$	$(1.0033) D I^2 R_{on}$
(c) $\Delta i = I$	$(1.155) I \sqrt{D}$	$(1.3333) D f^2 R_{on}$

Fundamentals of Power Electronics

32

Summary of chapter 3

- 1. The dc transformer model represents the primary functions of any dc-dc converter: transformation of dc voltage and current levels, ideally with 100% efficiency, and control of the conversion ratio M via the duty cycle D. This model can be easily manipulated and solved using familiar techniques of conventional circuit analysis.
- The model can be refined to account for loss elements such as inductor winding resistance and semiconductor on-resistances and forward voltage drops. The refined model predicts the voltages, currents, and efficiency of practical nonideal converters.
- 3. In general, the dc equivalent circuit for a converter can be derived from the inductor volt-second balance and capacitor charge balance equations. Equivalent circuits are constructed whose loop and node equations coincide with the volt-second and charge balance equations. In converters having a pulsating input current, an additional equation is needed to model the converter input port; this equation may be obtained by averaging the converter input current.

Fundamentals of Power Electronics