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Simplifying Circuits With Ideal XF

3.1. The dc transformer model

Basic equations of an ideal
de-dc converter:

Py=Py,
Vel,=VI

(n = 100%)

V=MD)V,
I,=M(D) I

These equations are valid in steady-state. During
transients, energy storage within filter elements may cause
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ot
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Equivalent circuits corresponding to
ideal dc-dc converter equations

Pu=P,, V,1,=VI V=MDV, Il.=MD)I

[T &
Dependent sources DC transformer
1 1M i
I I + _——ly
*— Power . . Power
+ + ; Vv v
Power Power | input g output
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input Ve E] MDY MDY, - ¥ ouipul
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Cantrol input
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The DC transformer model
1y 1:M(D) !
L — —
o A Models basic properties of
e awer 3
OWEE g L " ideal dc-dc converter:
input £ aulpit

+ conversion of dc voltages
= - and currents, ideally with
100% efficiency

[D * conversion ratio M
controllable via duty cycle
Control inpur

« Solid line denotes ideal transformer model, capable of passing dc voltages
and currents

« Time-invariant model (no switching) which can be solved to find dc
components of converter waveforms
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Example: use of the DC transformer model

1. Original system

¥
Switching
., >
de-de Vv s R
converter

Tb

2. Insert dc transformer model

1 1 MDYy

Vi
=

AR
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3. Push source through transformer
MY D)R,

MMV,

4. Solve circuit

R

V=MD)V, —
R+ M (D) R,
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3.2. Inclusion of inductor copper loss

Dc transformer model can be extended, to include converter nonidealities.

Example: inductor copper loss (resistance of winding):

L

— B AA—

R,

Insert this inductor model into boost converter circuit:

I R,

2

— > AN

v O

\" +

1
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Analysis of nonideal boost converter

L R,
— T AN,

swilch in position 1 / \ swilch in position 2
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Nonideal Boost Converter




Circuit equations, switch in position 1

Inductor current and
capacitor voltage:

vity=V, —i(t) R,
idty==v() /R

Small ripple approximation:

vin=V,—IR,
idty=-VIR
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Circuit equations, switch in position 2

; L R,
. T A,

v)=V -ty R —v(t)=V,-IR -V
idh)=it)-vih/R=I-V/IR
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Inductor voltage and capacitor current waveforms

Average inductor voltage: Oty
Ty
(r) =4 [ vioar ~— b1, —*|+—pT, —
5 L
. 3
=DV, IR)+ DV~ IR - V) V. IR,V
Inductor volt-second balance: i) PR
0=V, —IR, —-DV
Average capacitor current: - '
(i) =D(-VIR +D (I-V/R)
Capacitor charge balance:
0=D1-V/R
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Solution for output voltage
5
We now have two i R /R=0
equations and two ;
unknowns: a £u=001
0=V,-IR -DV 35
0=D1-VIR 3 R, /R =002
Eliminate I and E 2
solve for V: 2 R, R~ 0.05

VvV _1 | L5

V. D (1+R,/D°R)

1] 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
D
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3.3. Construction of equivalent circuit model

Results of previous section (derived via inductor volt-sec balance and
capacitor charge balance):

(vy=0=V,— IR, -DV
(ic}=0=D1-V/IR

View these as loop and node equations of the equivalent circuit.
Reconstruct an equivalent circuit satisfying these equations
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Inductor voltage equation

(v)=0=V,~IR -DV

+ Derived via Kirchhoff's voltage
law, to find the inductor voltage
during each subinterval

+ Average inductor voltage then
set to zero

* This is a loop equation: the dc
components of voltage around
a loop containing the inductor
sum to zero

= IR, term: voltage across resistor
of value R, having current /

« D'Vterm: for now, leave as
dependent source
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Capacitor current equation

(iy=0=D1-V/IR

* Derived via Kirchoff’s current
law, to find the capacitor
current during each subinterval

« Average capacitor current then
set to zero

+ This is a node equation: the dc
components of current flowing
into a node connected to the
capacitor sum to zero
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« V/R term: current through load

resistor of value R having voltage V

= D'l term: for now, leave as

dependent source
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Complete equivalent circuit

The two circuits, drawn together:

RJ.
A m
Ve /D pv [+ pr V. SR

The dependent sources are equivalent

toa D': 1 transformer:

U Dl
} W\ T
o 1%
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Dependent sources and transformers

+ sources have same coefficient

« reciprocal voltage/current
dependence
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Solution of equivalent circuit

Converter equivalent circuit
Ry D:1
———"A

“Q

Refer all elements to transformer

secondary:
R D
N

D1 &2

var @) v R
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T
¥ :: R
Solution for output voltage
using voltage divider formula:
V= L R = 5 I
D R+R:, D o {t:,
D DR
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Solution for input (inductor) current

R, Bl
> AN =
-
v, v SR
_ v, v, 1
" DR+R, D7, R
DR
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Solution for converter efficiency

P,=(V) )

P, =MW

P, _ (V) (DD

nN=-5"= i

n (Vo h
n= IR
1 +—
DR
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Efficiency, for various values of R,

100%

| W

60%

40%
30%
20%
10%

0%
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3.4. How to obtain the input port of the model

Buck converter example —use procedure of previous section to
derive equivalent circuit

i I i L R,
— B0 ——AN
/ + vy - +
2
v, C== v 3R
Average inductor voltage and capacitor current:
{(w)=0=DV,~LR, -V, (iy=0=1,-VJR
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Construct equivalent circuit as usual

(w)=0=DV,-I,R, -V, (icy=0=1,-VJR
R.‘.
e e, A/ .
+{v) - R R A/~
=0 (i¢ L

)}
DV, [f:l C =011533 Ve SR

What happened to the transformer?
« Need another equation
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Modeling the converter input port

Input current waveform i (#):

i(n
4 (=1
—
area =
DT 1,
0
0 DT, T '

Dc component (average value) of i (1) is

T

1= | iwd=ni
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Input port equivalent circuit

1= ?L [ i di=DI,
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Complete equivalent circuit, buck converter

Input and output port equivalent circuits, drawn together:
L I R,
& L *

v, C_) DI, I:l] [j DV, Ve SR

Replace dependent sources with equivalent dc transformer:
L 1:D LR
5 . L A
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3.5. Example: inclusion of semiconductor
conduction losses in the boost converter model

Boost converter example

i L

— T — N
"‘}CD I:J!—TE@ c+ RS v

Models of on-state semiconductor devices:
MQOSFET: on-resistance R

on

Diode: constant forward voltage V,, plus on-resistance R,

Insert these models into subinterval circuits
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Modeling of component conduction losses

Boost converter example: circuits during
subintervals 1 and 2

i L
> a1 ! | "
E i(i
“Q i
br.oT, -|_
swilch in position 1 / \ swilch in position 2
L R, i L R,

Ry
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Average inductor voltage and capacitor current

vln
V, - IR IR,
- DT, T,
t
V, IR, —Vy, IR, -V
ity
1-V/R
!
—V/R

(w)=D(V,~IR, ~IR,)+D(V,~IR, - V,~IR,-V)=0

(i} =DEVIRY + DI - VIR) =0
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Construction of equivalent circuits

V.— IR, —IDR, - DV, - IDR,, - D'V =0

R - ',)Rmr !J V”

" O

Df-VIR=0

i
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Complete equivalent circuit

o+
>
v, v SR
+
Ve v SR
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Solution for output voltage
Ln DR, ¥ DR, D1
S A —

I : DR
v:(—.] V.-DV,||—
D { . ’] DR+ R, + DR, + D'R,,
k. S [1_]  PVol [ 1
V. \D V. R, + DR, + DR,
* “ 4 —=—2 =

DR
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Solution for converter efficiency

ORy, Dl
P,=(V) D) o >
v, v :: R
P.=(V) (DD )
( 1DV
V‘l
n=n0 Y -
¢ [, ,RtDR.+DR,
D R
Conditions for high efficiency:
VD =V,
D’R = R, +DR,, + DR,
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Accuracy of the averaged equivalent circuit
in prediction of losses

- Model uses average MOSFET current waveforms, for various
currents and voltages ripple magnitudes:

+ To correctly predict power i(r) 4 5

loss in a resistor, use rms /
values
I @ {111

+ Result is the same, (@
provided ripple is small 0
0 DT, T !
Inchictor current ripple MOSFET nns current Average power loss in R |
(W) Ai=0 1D DER,
(b) Ai=0.11 (1001671 D (1.0033) DF R,
(© Ai =1 (11551 D (1.3333)DF R,
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Summary of chapter 3

1. The dc transformer model represents the primary functions of any dc-dc
converter: transformation of dc voltage and current levels, ideally with
100% efficiency, and control of the conversion ratio M via the duty cycle D.
This model can be easily manipulated and solved using familiar techniques
of conventional circuit analysis.

2. The model can be refined to account for loss elements such as inductor
winding resistance and semiconductor on-resistances and forward voltage
drops. The refined model predicts the voltages, currents, and efficiency of
practical nonideal converters.

3. In general, the dc equivalent circuit for a converter can be derived from the
inductor volt-second balance and capacitor charge balance equations.
Equivalent circuits are constructed whose loop and node equations
coincide with the volt-second and charge balance equations. In converters
having a pulsating input current, an additional equation is needed to model
the converter input port; this equation may be obtained by averaging the
converter input current.
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