Lecture 5: Semiconductor Device Implementation

ECE 481: Power Electronics
Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Construction of equivalent circuits

$$V_g - IR_L - IDR_{on} - D'V_D - ID'R_D - D'V = 0$$

$$R_L DR_{on} D'V_D D'R_D$$

$$V_g + IR_L - IDR_{on} + ID'R_D - ID'V_D$$

$$V_g + ID'V_D D'V_D$$

$$I D'V_D D'V_D$$

$$V_g + ID'V_D D'V_D$$

$$V_g + ID'V_D D'V_D$$

$$V_g + ID'V_D D'V_D$$

$$V_g + ID'V_D D'V_D$$

DI V/R

Fundamentals of Power Electronics

28 Chapter 3: Steady-state equivalent circuit modeling, ...

Complete equivalent circuit

Fundamentals of Power Electronics

29 Chapter 3: Steady-state equivalent circuit modeling, ...

Accuracy of the averaged equivalent circuit in prediction of losses

- Model uses average currents and voltages
- To correctly predict power loss in a resistor, use rms values
- Result is the same, provided ripple is small

MOSFET current waveforms, for various ripple magnitudes:

MOSFET rms current	Average power loss in R _{on}
1 √ D	DFR on Ool EIRT
(1.00167) I √D	(1.0033) DI Rom - 0.530/ 0
(c) $\Delta i = I$ (1.155) $I \sqrt{D}$	$(1.3333) D f^2 R_{on}$
	339 ein
	(1.00167) I \(\int \overline{D} \)

Fundamentals of Power Electronics

32

Chapter 3: Steady-state equivalent circuit modeling, ..

Summary of chapter 3

- 1. The dc transformer model represents the primary functions of any dc-dc converter: transformation of dc voltage and current levels, ideally with 100% efficiency, and control of the conversion ratio M via the duty cycle D. This model can be easily manipulated and solved using familiar techniques of conventional circuit analysis.
- The model can be refined to account for loss elements such as inductor winding resistance and semiconductor on-resistances and forward voltage drops. The refined model predicts the voltages, currents, and efficiency of practical nonideal converters.
- 3. In general, the dc equivalent circuit for a converter can be derived from the inductor volt-second balance and capacitor charge balance equations. Equivalent circuits are constructed whose loop and node equations coincide with the volt-second and charge balance equations. In converters having a pulsating input current, an additional equation is needed to model the converter input port; this equation may be obtained by averaging the converter input current.

Fundamentals of Power Electronics

3

Chapter 3: Steady-state equivalent circuit modeling, ...

Chapter 4. Switch Realization

4.1. Switch applications

Single-, two-, and four-quadrant switches. Synchronous rectifiers

4.2. A brief survey of power semiconductor devices

Power diodes, MOSFETs, BJTs, IGBTs, and thyristors

4.3. Switching loss

Transistor switching with clamped inductive load. Diode recovered charge. Stray capacitances and inductances, and ringing. Efficiency vs. switching frequency.

4.4. Summary of key points

Fundamentals of Power Electronics

Chapter 4: Switch realization

SPST (single-pole single-throw) switches

Realization of SPDT switch using two SPST switches

- A nontrivial step: two SPST witches are not exactly equivalent to one SPDT switch
- It is possible for both SPST switches to be simultaneously ON or OFF
- Behavior of converter is then significantly modified —discontinuous conduction modes (chapter 5)
- Conducting state of SPST switch may depend on applied voltage or current —for example: diode

Fundamentals of Power Electronics

1

Chapter 4: Switch realization

Realization of buck converter using single-quadrant switches

4.1.2. <u>Current-bidirection</u>al two-quadrant switches

BJT / anti-parallel diode realization

instantaneous i-v characteristic

- Usually an active switch, controlled by terminal C
 - Normally operated as twoquadrant switch:
- can conduct positive or negative on-state current
- can block positive off-state voltage
- provided that the intended onstate and off-state operating points lie on the composite i-v characteristic, then switch can be realized as shown

Fundamentals of Power Electronics

12

Chapter 4: Switch realization

