Lecture 7: MOSFET, IGBT, and Switching Loss

ECE 481: Power Electronics
Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013

Announcements

- Homework #3 posted this afternoon
 - Plots in homeworks: label all salient features
 - Assignment clarity: Box answers, staple sheets, include course number
- Course E-mail list
- No office hours tomorrow
- No class next week
- Midterm Exam 1 handed out on 9/26

MOSFET Datasheet

600V CoolMOS™ C6 Power Transistor

IPD60R2K0C6

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ C8 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The resulting devices provide all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. Extremely low switching and conduction losses make switching

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	2.0	Ω
$Q_{g,typ}$	6.7	nC
$I_{D,pulse}$	6	Α
E _{oss} @ 400V	0.76	μJ
Rody diode dildt	500	A/ue

Drain-source on-state resistance	R _{DS(on)}	-	1.80	2.0	Ω
		-	4.68	-	

$V_{\rm GS}$ =10 V, $I_{\rm I}$ $T_{\rm J}$ =25 °C	=0.76 A,
V _{GS} =10 V, I _I	=0.76 A,

MOSFET nonlinear C_{ds}

Approximate dependence of incremental C_{ds} on v_{ds} :

$$C_{ds}(v_{ds}) \approx C_0 \sqrt{\frac{V_0}{v_{ds}}} = \frac{C_0}{\sqrt{v_{ds}}}$$

Energy stored in C_{ds} at $v_{ds} = V_{DS}$:

$$W_{Cds} = \int v_{ds} \, i_C \, dt = \int_0^{V_{DS}} v_{ds} \, C_{ds}(v_{ds}) \, dv_{ds}$$

$$W_{Cds} = \int_0^{V_{DS}} C_0(v_{ds}) \sqrt{v_{ds}} dv_{ds} = \frac{2}{3} C_{ds}(V_{DS}) V_{DS}^2$$

— same energy loss as linear capacitor having value $\frac{4}{3} C_{ds}(V_{DS})$

	fom →	Qg. For or	Ompr Jour Car	
Characte		eral commerc	ial power N	//OSFETs
IRLHM620	20V	40A	0.0025Ω	52nC
→ EPC2015	40V	33A	0.004Ω	10.5nC
Part number	Rated max voltage	Rated avg current	R_{on}	Q_{g} (typical)
IRFZ48	60V	50A	0.018Ω	110nC
IRF510	100V	5.6A	0.54Ω	8.3nC
IRF540	100V	28A	0.077Ω	72nC
APT10M25BNR	100V	75A	0.025Ω	171nC
IRF740	400V	10A	0.55Ω	63nC
MTM15N40E	400V	15A	0.3Ω	110nC
APT5025BN	500V	23A	0.25Ω	83nC
APT1001RBNR IPW60R099CP	1000V	11A	1.0Ω	150nC
IPW60R099CP	600V 、	31A	/0.1Ω	60nC
IPW90R340C3	900V ,)	15A	0.34Ω	93nC
TPH3006PD	600V	17A	0.15Ω	6nC 📙
CMF20120	1200V	24A	0.098Ω	49nC

MOSFET: conclusions

- On-resistance increases rapidly with rated blocking voltage
- Easy to drive
 - The device of choice for blocking voltages less than 500V
 - 1000V devices are available, but are useful only at low power levels (100W)
 - Part number is selected on the basis of on-resistance rather than current rating

4.2.3. Bipolar Junction Transistor (BJT) Interdigitated base and emitter contacts Vertical current flow npn device is shown minority carrier device on-state: base-emitter and collector-base junctions are both

Collector

forward-biased on-state: substantial minority charge in *p* and *n*⁻ regions, conductivity

modulation

Conclusions: BJT

- BJT has been replaced by MOSFET in low-voltage (<500V) applications
- BJT is being replaced by IGBT in applications at voltages above 500V
- A minority-carrier device: compared with MOSFET, the BJT exhibits slower switching, but lower on-resistance at high voltages

4.2.4. The Insulated Gate Bipolar Transistor (IGBT)

- · A four-layer device
- Similar in construction to MOSFET, except extra p region
- On-state: minority carriers are injected into n region, leading to conductivity modulation
- compared with MOSFET: slower switching times, lower on-resistance, useful at higher voltages (up to 1700V)

Characteristics of several commercial devices

Part number	Rated max voltage	Rated avg current	V_F (typical)	t_f (typical)
Single-chip devi	ices			
HGTG32N60E2	600V	32A	2.4V	$0.62 \mu s$
HGTG30N120D2	1200V	30A	3.2A	$0.58 \mu s$
Multiple-chip p	ower modules			
CM400HA-12E	600V	400A	2.7V	$0.3 \mu s$
CM300HA-24E	1200V	300A	2.7V	$0.3 \mu s$

Conclusions: IGBT

- Becoming the device of choice in 500 to 1700V+ applications, at power levels of 1-1000kW
- Positive temperature coefficient at high current —easy to parallel and construct modules
- Forward voltage drop: diode in series with on-resistance. 2-4V typical
- Easy to drive —similar to MOSFET
- Slower than MOSFET, but faster than Darlington, GTO, SCR
- Typical switching frequencies: 3-30kHz
- IGBT technology is rapidly advancing:
 - 3300 V devices: HVIGBTs
 - 150 kHz switching frequencies in 600 V devices

The Silicon Controlled Rectifier (SCR) Positive feedback —a latching device forward onducting · A minority carrier device Double injection leads to very low on-resistance, hence low forward voltage drops attainable in very high voltage devices reverse blocking forward , blocking Simple construction, with large feature size · Cannot be actively turned off breakdown A voltage-bidirectional two-quadrant 5000-6000V, 1000-2000A devices

4.3. Switching loss

- Energy is lost during the semiconductor switching transitions, via several mechanisms:
 - · Transister switching times Outdated
 - · Diode stored charge 🔘
 - · Energy stored in device capacitances and parasitic inductances
- · Semiconductor devices are charge controlled
- Time required to insert or remove the controlling charge determines switching times

Some other sources of this type of switching loss

Schottky diode (mojority corrier)

- · Essentially no stored charge ロイラグ ぬす C 」ング
- · Significant reverse-biased junction capacitance

Transformer leakage inductance

- · Effective inductances in series with windings
- · A significant loss when windings are not tightly coupled

Interconnection and package inductances

- Diodes
- Transistors
- · A significant loss in high current applications

4.3.4. Efficiency vs. switching frequency

Add up all of the energies lost during the switching transitions of one switching period:

$$W_{tot} = W_{on} + W_{off} + W_D + W_C + W_L + \dots$$

Average switching power loss is

$$P_{sw} = W_{tot} f_{sw}$$

Total converter loss can be expressed as

$$P_{loss} = P_{cond} + P_{fixed} + W_{tot} f_{sw}$$

where

 $P_{\it fixed}$ = fixed losses (independent of load and $f_{\it sw}$) $P_{\it cond}$ = conduction losses

Fundamentals of Power Electronics

Chapter 4: Switch realization

Inclusion of Switching Loss in the Averaged Equivalent Circuit Model

The methods of Chapter 3 can be extended to include switching loss in the converter equivalent circuit model

- Include switching transitions in the converter waveforms
 - · Model effects of diode reverse recovery, etc.

To obtain tractable results, the waveforms during the switching transitions must usually be approximated

Things that can substantially change the results:

- Ringing caused by parasitic tank circuits
- Snubber circuits

The Modeling Approach

Extension of Chapter 3 Methods

- Sketch the converter waveforms
 - Including the switching transitions (idealizing assumptions are made to lead to tractable results)
 - In particular, sketch inductor voltage, capacitor current, and input current waveforms
- The usual steady-state relationships:

$$-\langle v_L \rangle = 0, \langle i_C \rangle = 0, \langle i_g \rangle = I_g$$

 Use the resulting equations to construct an equivalent circuit model, as usual

Buck Converter Example

- Ideal MOSFET(*p*–*n* diode with reverse recovery
- Neglect semiconductor device capacitances, MOSFET switching times, etc.
- Neglect conduction losses
- Neglect ripple in inductor current and capacitor voltage

Inductor volt-second balance and capacitor charge balance

As usual: $\langle v_L \rangle = 0 = DV_g - V$

Also as usual: $\langle i_C \rangle = 0 = I_L - V/R$

Average input current

$$\langle i_g \rangle = I_g = (area under curve)/T_s$$

$$= (DT_s I_L + t_r I_L + Q_r) / T_s$$

$$= (DT_sI_L + t_rI_L + Q_r)/T_s$$

$$= DI_L + t_rI_L/T_s + Q_r/T_s$$

$$= C \cdot i_{\theta} > 0$$

Construction of Equivalent Circuit Model

From inductor volt-second balance: $\langle \ v_L \ \rangle = 0 = DV_g - V$ From capacitor charge balance: $\langle \ i_C \ \rangle = 0 = I_L - V/R$

Input port of model

Combine for complete model

The two independent current sources consume power

$$V_g \left(t_r I_L / T_s + Q_r / T_s \right)$$

equal to the switching loss induced by diode reverse recovery

Solution of model

Efficiency: $\eta = P_{out}/P_{in}$

$$P_{out} = VI_L \qquad P_{in} = V_g \left(DI_L + t_r I_L / T_s + Q_r / T_s \right)$$

Combine and simplify:

$$\eta = 1 / [1 + f_s(t_r/D + Q_rR/D^2V_g)] = -\frac{1}{1 + f_s(t_r/D + Q_rR/D^2V_g)}$$

Predicted Efficiency vs Duty Cycle

- Switching frequency 100 kHz
- Input voltage 24 V
- Load resistance 15 Ω
- Recovered charge 0.75 μCoul
- Reverse recovery time 75 nsec
- (no attempt is made here to model how the reverse recovery process varies with inductor current)
- Substantial degradation of efficiency
- Poor efficiency at low duty cycle

Boost Converter Example

- Model same effects as in previous buck converter example:
- Ideal MOSFET, *p*–*n* diode with reverse recovery
- Neglect semiconductor device capacitances, MOSFET switching times, etc
- Neglect conduction losses
- Neglect ripple in inductor current and capacitor voltage

Inductor volt-second balance and average input current

As usual: $\langle v_L \rangle = 0 = V_g - D'V$

Also as usual: $\langle i_g \rangle = I_L$

Construct model

The result is:

The two independent current sources consume power

$$V\left(t_rI_L/T_s+Q_r/T_s\right)$$

equal to the switching loss induced by diode reverse recovery

Predicted V/V_g vs duty cycle

- Switching frequency 100 kHz
- Input voltage 24 V
- Load resistance 60 Ω
- Recovered charge 5 μCoul
- Reverse recovery time 100 nsec
- Inductor resistance $R_L = 0.3 \Omega$
- (inductor resistance also inserted into averaged model here)

Summary

- The averaged modeling approach can be extended to include effects of switching loss
- Transistor and diode waveforms are constructed, including the switching transitions. The effects of the switching transitions on the inductor, capacitor, and input current waveforms can then be determined
- Inductor volt-second balance and capacitor charge balance are applied
- Converter input current is averaged
- Equivalent circuit corresponding to the the averaged equations is constructed