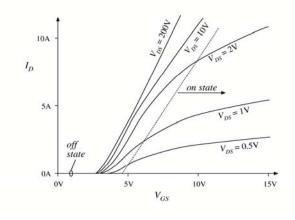
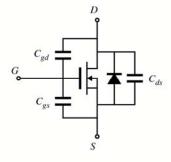

Lecture 7: MOSFET, IGBT, and Switching Loss


ECE 481: Power Electronics

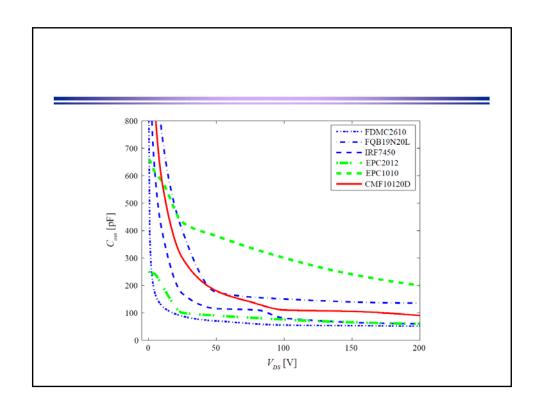
Prof. Daniel Costinett

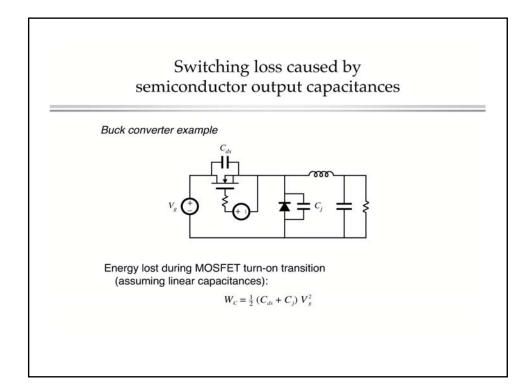
Department of Electrical Engineering and Computer Science
University of Tennessee Knoxville
Fall 2013



Typical MOSFET characteristics

- Off state: $V_{GS} < V_{th}$
- On state: $V_{GS} >> V_{th}$
- MOSFET can conduct peak currents well in excess of average current rating —characteristics are unchanged
- on-resistance has positive temperature coefficient, hence easy to parallel


A simple MOSFET equivalent circuit



- C_{gs} : large, essentially constant
- C_{gd} : small, highly nonlinear
- C_{ds}: intermediate in value, highly nonlinear
- switching times determined by rate at which gate driver charges/discharges C_{gs} and C_{gd}

$$C_{ds}(v_{ds}) = \frac{C_0}{\sqrt{1 + \frac{v_{ds}}{V_0}}}$$

$$C_{ds}(v_{ds}) \approx C_0 \sqrt{\frac{V_0}{v_{ds}}} = \frac{C_0}{\sqrt{v_{ds}}}$$

MOSFET nonlinear C_{ds}

Approximate dependence of incremental C_{ds} on v_{ds} :

$$C_{ds}(v_{ds}) \approx C_0 \sqrt{\frac{V_0}{v_{ds}}} = \frac{C_0}{\sqrt{v_{ds}}}$$

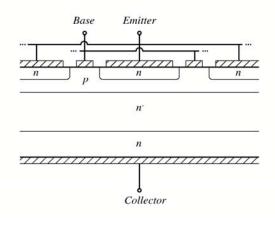
Energy stored in C_{ds} at $v_{ds} = V_{DS}$:

$$W_{Cds} = \int v_{ds} i_C dt = \int_0^{v_{DS}} v_{ds} C_{ds}(v_{ds}) dv_{ds}$$

$$W_{Cds} = \int v_{ds} i_C dt = \int_0^{v_{DS}} v_{ds} C_{ds}(v_{ds}) dv_{ds}$$

$$W_{Cds} = \int_0^{v_{DS}} \dot{C_0}(v_{ds}) \sqrt{v_{ds}} dv_{ds} = \frac{2}{3} C_{ds}(V_{DS}) V_{DS}^2$$

— same energy loss as linear capacitor having value $\frac{4}{3} C_{ds}(V_{DS})$

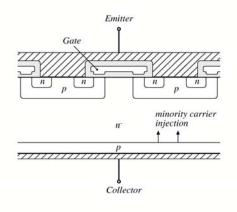

Characteristics of several commercial power MOSFETs

IRLHM620	20V	40A	0.0025Ω	52nC
EPC2015	40V	33A	0.004Ω	10.5nC
Part number	Rated max voltage	Rated avg current	R_{on}	Q_g (typical)
IRFZ48	60V	50A	0.018Ω	110nC
IRF510	100V	5.6A	0.54Ω	8.3nC
IRF540	100V	28A	0.077Ω	72nC
APT10M25BNR	100V	75A	0.025Ω	171nC
IRF740	400V	10A	0.55Ω	63nC
MTM15N40E	400V	15A	0.3Ω	110nC
APT5025BN	500V	23A	0.25Ω	83nC
APT1001RBNR	1000V	11A	1.0Ω	150nC
IPW60R099CP	600V	31A	0.1Ω	60nC
IPW90R340C3	900V	15A	0.34Ω	93nC
TPH3006PD	600V	17A	0.15Ω	6nC
CMF20120	1200V	24A	0.098Ω	49nC

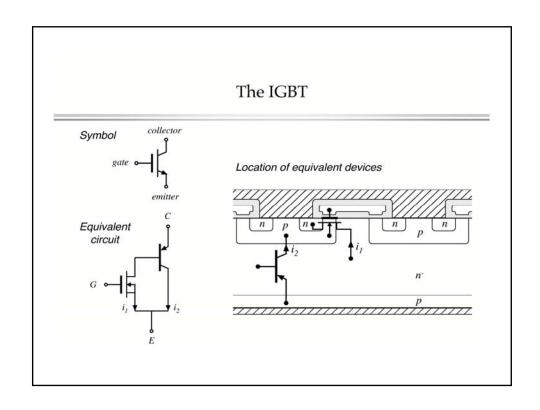
MOSFET: conclusions

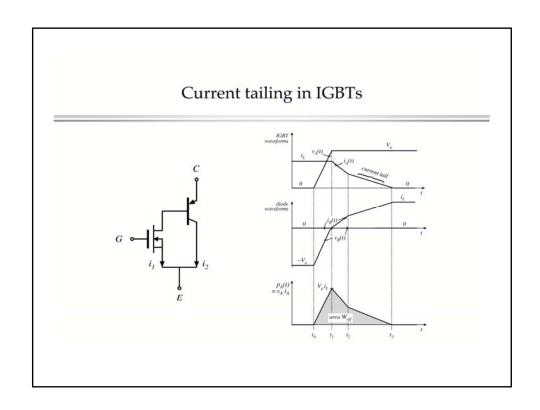
- · A majority-carrier device: fast switching speed
- · Typical switching frequencies: tens and hundreds of kHz
- On-resistance increases rapidly with rated blocking voltage
- · Easy to drive
- The device of choice for blocking voltages less than 500V
- 1000V devices are available, but are useful only at low power levels (100W)
- Part number is selected on the basis of on-resistance rather than current rating

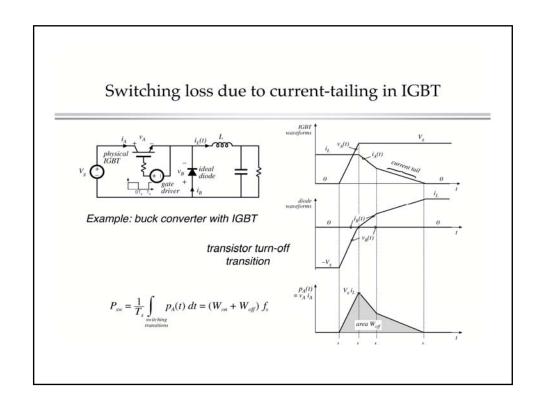
4.2.3. Bipolar Junction Transistor (BJT)



- Interdigitated base and emitter contacts
- · Vertical current flow
- npn device is shown
- · minority carrier device
- on-state: base-emitter and collector-base junctions are both forward-biased
- on-state: substantial minority charge in p and n⁻ regions, conductivity modulation


Conclusions: BJT

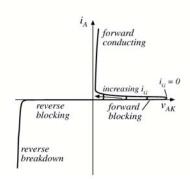

- BJT has been replaced by MOSFET in low-voltage (<500V) applications
- BJT is being replaced by IGBT in applications at voltages above 500V
- A minority-carrier device: compared with MOSFET, the BJT exhibits slower switching, but lower on-resistance at high voltages


4.2.4. The Insulated Gate Bipolar Transistor (IGBT)

- · A four-layer device
- Similar in construction to MOSFET, except extra p region
- On-state: minority carriers are injected into n region, leading to conductivity modulation
- compared with MOSFET: slower switching times, lower on-resistance, useful at higher voltages (up to 1700V)

Characteristics of several commercial devices

Part number	Rated max voltage	Rated avg current	V_F (typical)	t_f (typical)
Single-chip dev	ices			
HGTG32N60E2	600V	32A	2.4V	$0.62 \mu s$
HGTG30N120D2	1200V	30A	3.2A	$0.58 \mu s$
Multiple-chip p	oower modules			
CM400HA-12E	600V	400A	2.7V	$0.3 \mu s$
CM300HA-24E	1200V	300A	2.7V	$0.3 \mu s$


Conclusions: IGBT

- Becoming the device of choice in 500 to 1700V+ applications, at power levels of 1-1000kW
- Positive temperature coefficient at high current —easy to parallel and construct modules
- Forward voltage drop: diode in series with on-resistance. 2-4V typical
- Easy to drive —similar to MOSFET
- · Slower than MOSFET, but faster than Darlington, GTO, SCR
- Typical switching frequencies: 3-30kHz
- IGBT technology is rapidly advancing:
 - 3300 V devices: HVIGBTs
 - 150 kHz switching frequencies in 600 V devices

4.2.5. Thyristors (SCR, GTO, MCT) The SCR symbol equiv circuit Anode (A) Q_2 Q_2 Q_2 Q_3 Q_4 Q_4

The Silicon Controlled Rectifier (SCR)

- Positive feedback —a latching device
- · A minority carrier device
- Double injection leads to very low on-resistance, hence low forward voltage drops attainable in very high voltage devices
- Simple construction, with large feature size
- · Cannot be actively turned off
- A voltage-bidirectional two-quadrant switch
- · 5000-6000V, 1000-2000A devices

4.3. Switching loss

- Energy is lost during the semiconductor switching transitions, via several mechanisms:
 - · Transistor switching times
 - · Diode stored charge
 - · Energy stored in device capacitances and parasitic inductances
- · Semiconductor devices are charge controlled
- Time required to insert or remove the controlling charge determines switching times

Some other sources of this type of switching loss

Schottky diode

- · Essentially no stored charge
- · Significant reverse-biased junction capacitance

Transformer leakage inductance

- · Effective inductances in series with windings
- · A significant loss when windings are not tightly coupled

Interconnection and package inductances

- · Diodes
- Transistors
- · A significant loss in high current applications

Inclusion of Switching Loss in the Averaged Equivalent Circuit Model

The methods of Chapter 3 can be extended to include switching loss in the converter equivalent circuit model

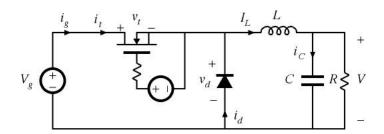
- Include switching transitions in the converter waveforms
- Model effects of diode reverse recovery, etc.

To obtain tractable results, the waveforms during the switching transitions must usually be approximated

Things that can substantially change the results:

- Ringing caused by parasitic tank circuits
- Snubber circuits

The Modeling Approach

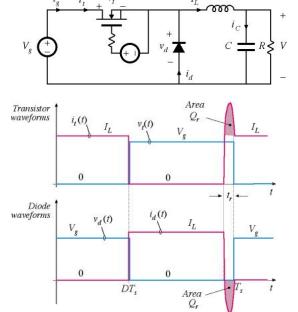

Extension of Chapter 3 Methods

- Sketch the converter waveforms
 - Including the switching transitions (idealizing assumptions are made to lead to tractable results)
 - In particular, sketch inductor voltage, capacitor current, and input current waveforms
- The usual steady-state relationships:

$$-\langle v_L \rangle = 0, \langle i_C \rangle = 0, \langle i_g \rangle = I_g$$

 Use the resulting equations to construct an equivalent circuit model, as usual

Buck Converter Example


- Ideal MOSFET, *p*–*n* diode with reverse recovery
- Neglect semiconductor device capacitances, MOSFET switching times, etc.
- Neglect conduction losses
- Neglect ripple in inductor current and capacitor voltage

Assumed waveforms

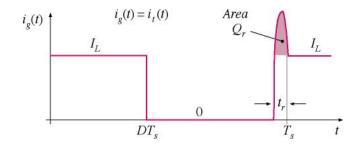
Diode recovered charge Q_r reverse recovery time t_r

These waveforms assume that the diode voltage changes at the end of the reverse recovery transient

- a "snappy" diode
- Voltage of soft-recovery diodes changes sooner
- Leads to a pessimistic estimate of induced switching loss

Inductor volt-second balance and capacitor charge balance

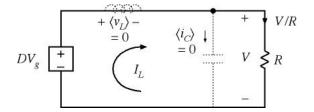
$$v_{L}(t) \qquad V_{g} - V$$


$$DT_{s} \qquad D'T_{s} \qquad t$$

$$v_{L}(t) = v_{d}(t) - V$$

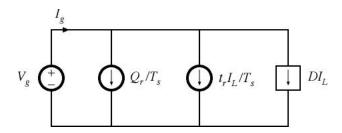
As usual: $\langle v_L \rangle = 0 = DV_g - V$

Also as usual: $\langle \; i_C \; \rangle = 0 = I_L - V\!/\!R$

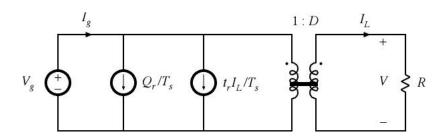

Average input current

$$\langle i_g \rangle = I_g = (area\ under\ curve)/T_s$$

= $(DT_sI_L + t_rI_L + Q_r)/T_s$
= $DI_L + t_rI_L/T_s + Q_r/T_s$


Construction of Equivalent Circuit Model

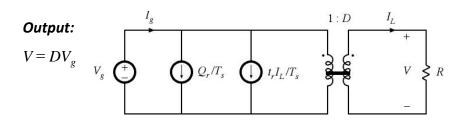
From inductor volt-second balance: $\langle\ v_L\ \rangle=0$ = DV_g-V From capacitor charge balance: $\langle\ i_C\ \rangle=0$ = I_L-V/R



Input port of model

$$\langle i_g \rangle = I_g = DI_L + t_r I_L / T_s + Q_r / T_s$$

Combine for complete model



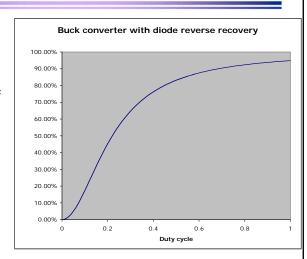
The two independent current sources consume power

$$V_g \left(t_r I_L / T_s + Q_r / T_s \right)$$

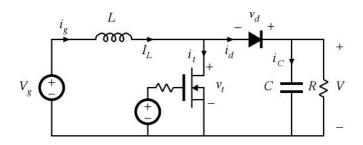
equal to the switching loss induced by diode reverse recovery

Solution of model

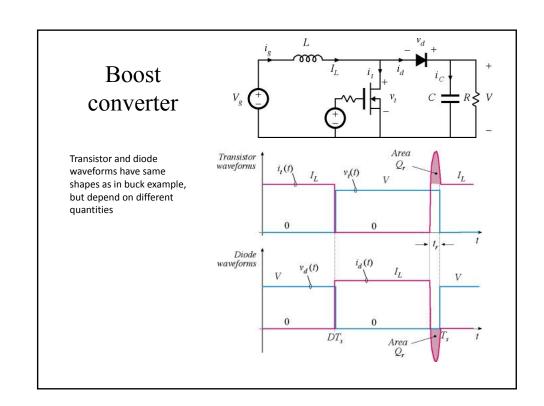
Efficiency:
$$\eta = P_{out}/P_{in}$$

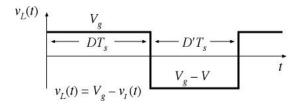

$$P_{out} = VI_L \qquad P_{in} = V_g \left(DI_L + t_r I_L / T_s + Q_r / T_s \right)$$

Combine and simplify:

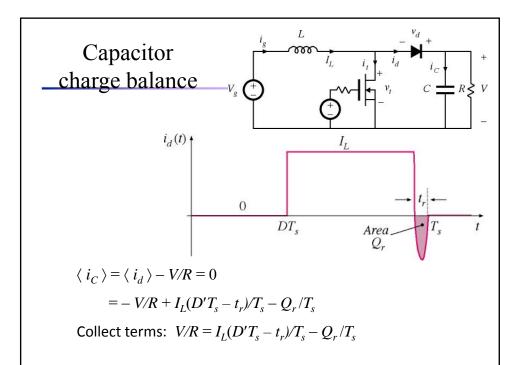

$$\eta = 1 / [1 + f_s(t_r/D + Q_rR/D^2V_g)]$$

Predicted Efficiency vs Duty Cycle

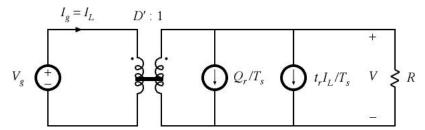

- Switching frequency 100 kHz
- Input voltage 24 V
- Load resistance 15 Ω
- Recovered charge 0.75 μCoul
- Reverse recovery time 75 nsec
- (no attempt is made here to model how the reverse recovery process varies with inductor current)
- Substantial degradation of efficiency
- Poor efficiency at low duty cycle


Boost Converter Example

- Model same effects as in previous buck converter example:
- Ideal MOSFET, *p*–*n* diode with reverse recovery
- Neglect semiconductor device capacitances, MOSFET switching times, etc.
- Neglect conduction losses
- Neglect ripple in inductor current and capacitor voltage



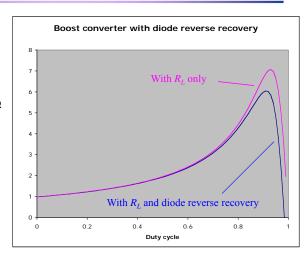
Inductor volt-second balance and average input current


As usual: $\langle v_L \rangle = 0 = V_g - D'V$

Also as usual: $\langle i_g \rangle = I_L$

Construct model

The result is:


The two independent current sources consume power

$$V\left(t_rI_L/T_s+Q_r/T_s\right)$$

equal to the switching loss induced by diode reverse recovery

Predicted V/V_g vs duty cycle

- Switching frequency 100 kHz
- Input voltage 24 V
- Load resistance 60 Ω
- Recovered charge 5 μCoul
- Reverse recovery time 100 nsec
- Inductor resistance $R_L = 0.3 \Omega$
- (inductor resistance also inserted into averaged model here)

Summary

- The averaged modeling approach can be extended to include effects of switching loss
- Transistor and diode waveforms are constructed, including the switching transitions. The effects of the switching transitions on the inductor, capacitor, and input current waveforms can then be determined
- Inductor volt-second balance and capacitor charge balance are applied
- Converter input current is averaged
- Equivalent circuit corresponding to the the averaged equations is constructed