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Announcements

e Homework #3 due today
« Midterm exam handed out on Thursday
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Solution of model

Output:
V=DV,

v, (j) (l 0, /T, (11T, é—é V SR

Efficiency: m =P,/ P;,
Pout = VI, Pin =V, (DI + t I [T, + Q[T
Combine and simplify:

n=1/[1+f, (/D +QR/DV,)]

Boost Converter Example
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¢ Model same effects as in previous buck converter example:
¢ Ideal MOSFET, p—n diode with reverse recovery

¢ Neglect semiconductor device capacitances, MOSFET switching times,
etc.

i

¢ Neglect conduction losses
¢ Neglect ripple in inductor current and capacitor voltage
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The two independent current sources consume power

V(L1 /T + Q. /T

equal to the switching loss induced by diode reverse recovery




Summary

* The averaged modeling approach can be extended to
include effects of switching loss

* Transistor and diode waveforms are constructed,
including the switching transitions. The effects of the
switching transitions on the inductor, capacitor, and
input current waveforms can then be determined

* Inductor volt-second balance and capacitor charge
balance are applied

* Converter input current is averaged

e Equivalent circuit corresponding to the the averaged
equations is constructed

6.2. A short list of converters

An infinite number of converters are possible, which contain switches
embedded in a network of inductors and capacitors

Two simple classes of converters are listed here:

+ Single-input single-output converters containing a single
inductor. The switching period is divided into two subintervals.
This class contains eight converters.

+ Single-input single-output converters containing two inductors.
The switching period is divided into two subintervals. Several of
the more interesting members of this class are listed.
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Converters producing a unipolar output voltage
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Converters producing a unipolar output voltage
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Converters producing a bipolar output voltage

suitable as dc-ac inverters
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Converters producing a bipolar output voltage

suitable as ac-dc rectifiers
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Several members of the class of two-inductor converters
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Several members of the class of two-inductor converters
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6.3. Transformer isolation

S— 3
o Vo 6@ i v
Objectives: "

« Isolation of input and output ground ?nnections, to meet
safety requirements

« Reduction of transformer size by incorporating high
frequency isolation transformer inside converter

Minimization of current and voltage stresses when a
| -up or - conversion ratio is needed
—use tran mer turns ratio

« Obtain multiple output voltages via multiple transformer
secondary windings and multiple converter secondary
circuits
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A simple transformer model

Multiple winding transformer Equivalent circuit model
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The magnetizing inductance L),

+ Models magnetization of Transformer core B-H characteristic

transformer core material

Bir) = [ vy(t) di

/ Dot

saturation

+ Appears effectively in parallel with
windings

« If all secondary windings are
disconnected, then primary winding
behaves as an inductor, equal to the
magnetizing inductance H(D) = iy (1)

slope = L,

= At dc: magnetizing inductance tends
to short-circuit. Transformers cannot Baal

- Dea

pass dc voltages

- Transformer saturates when
magnetizing current i, is too large
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Volt-second balance in L,,

The magnetizing inductance is a real inductor,
obeying =
diy(n) «
0 =Ly + .
integrate: v v,(1)
T
(1) =iy (0) = 7 f v, (Ddt - -
~M Jo S
Magnetizing current is determined by integral of — — .
the applied winding voltage. The magnetizing .
current and the winding currents are independent v4()
quantities. Volt-second balance applies: in B
steady-state, i, (7)) =1i,/(0), and hence T
(s Id[aal
- ¥ transformer
0= T J;) v (i
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Transformer reset

= “Transformer reset” is the mechanism by which magnetizing
inductance volt-second balance is obtained

* The need to reset the transformer volt-seconds to zero by the end of
each switching period adds considerable complexity to converters

* To understand operation of transformer-isolated converters:

* replace transformer by equivalent circuit model containing
magnetizing inductance

+ analyze converter as usual, treating magnetizing inductance as
any other inductor

+ apply volt-second balance to all converter inductors, including
magnetizing inductance
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6.3.4. Flyback converter

Q, D,
buck-boost converter:

; o, D,
construct inductor
winding using two A+l » < -
parallel wires: o o
v, (+ =Y
O Ll E
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Derivation of flyback converter, cont.

Isolate inductor
windings: the flyback
converter

Flyback converter
having a 1:n turns
ratio and positive
output:
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The “flyback transformer”

.

A two-winding inductor
Symbol is same as
transformer, but function
differs significantly from
ideal transformer

Energy is stored in
magnetizing inductance
Magnetizing inductance is
relatively small

Current does not simultaneously flow in primary and secondary windings
« Instantaneous winding voltages follow turns ratio

« Instantaneous (and rms) winding currents do not follow turns ratio
« Model as (small) magnetizing inductance in parallel with ideal transformer
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Flyback Converter Example
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Equivalent Circuit Model




Subinterval 1

Transformer model

Q; on, D, off

1
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CCM: small ripple
approximation leads to
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iy=1
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CCM Flyback waveforms and solution

vy V.
Volt-second balance:
¥ %4
i (\,_)_D[v‘,}+n(_” =0
Conversion ratio is
] Iin — VIR
fe Ve D
M(D)= S np
Charge balance:
: Vv I_Vi_
. i) =p(-%)+0(k-¥)=0
: Dc component of magnetizing
i .
, ; current is
= _nv
I= D
8 Dc component of source current is
e [ /I, = (t'x) = D[i] + D'{U}
Conducting £ i
devices: @ D,
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Equivalent circuit model: CCM Flyback

v)=D(v,)+D(-%)=0 ! ’ 4
f'c-)=D[— %]4-1)'[-{;—-5-):0 v, (_) DI by, 2V E:l% RSV
1,=(i,)=D(1)+D(0) -

1:0 _ Din
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Boost Canverter

Large Step Conversion Ratio

Flyback, n=100
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Flyback Semiconductor Waveforms
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Flyback Switch Implementation
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Flyback Reverse Recovery
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Flyback Reverse Recovery
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