DCM Mode Boundary: Summary

$$K > K_{crit}(D)$$
 or $R < R_{crit}(D)$ for CCM
 $K < K_{crit}(D)$ or $R > R_{crit}(D)$ for DCM

Table 5.1. CCM-DCM mode boundaries for the buck, boost, and buck-boost converters

Conventer	$K_{crit}(D)$	$\max_{0 \le D \le 1} (K_{crit})$	$R_{crit}(D)$	$\min_{0 \le D \le 1} (R_{crit})$
Buck	(1 - D)	1	$\frac{2L}{(1-D)T_s}$	$2\frac{L}{T_s}$
Boost	$D(I-D)^2$	$\frac{4}{27}$	$\frac{2L}{D\left(1-D\right)^2T_s}$	$\frac{27}{2}\frac{L}{T_s}$
Buck-boost	$(I-D)^2$	1	$\frac{2L}{(1-D)^2T}$	$2\frac{L}{T}$

Fundamentals of Power Electronics

9

Chapter 5: Discontinuous conduction mode

TENNESSEE T

Finding the Conversion Ratio M(D,K)

Analysis techniques for the discontinuous conduction mode:

Inductor volt-second balance

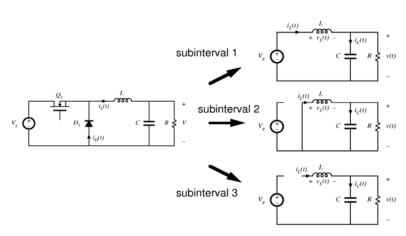
$$\langle v_L \rangle = \frac{1}{T_s} \int_0^{T_s} v_L(t) dt = 0$$

Capacitor charge balance

$$\langle i_C \rangle = \frac{1}{T_s} \int_0^{T_s} i_C(t) dt = 0$$

Small ripple approximation sometimes applies:

$$v(t) \approx V$$
 because $\Delta v \ll V$

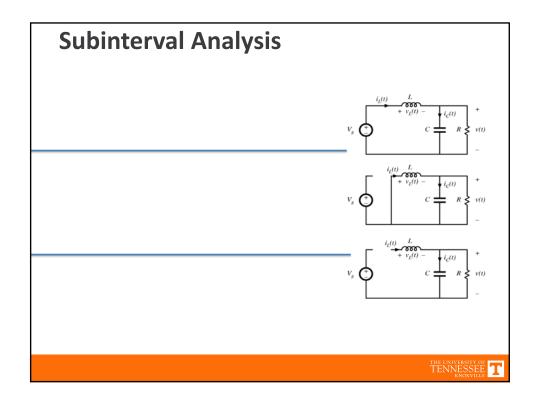

 $i(t) \approx I$ is a poor approximation when $\Delta i > I$

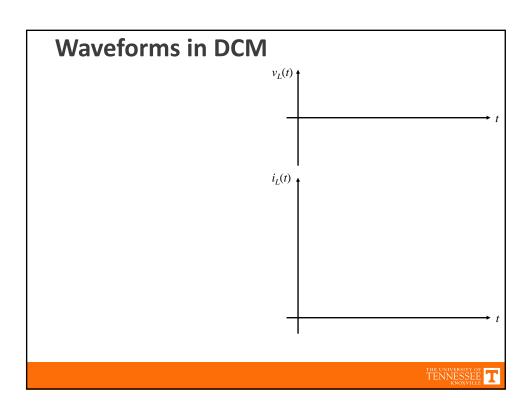
Converter steady-state equations obtained via charge balance on each capacitor and volt-second balance on each inductor. Use care in applying small ripple approximation.

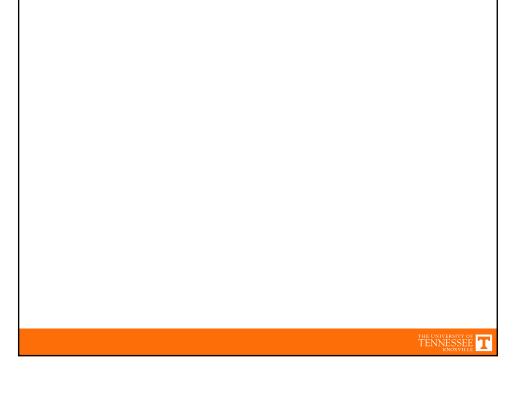
Fundamentals of Power Electronics

Chapter 5: Discontinuous conduction mode

Buck Converter in DCM




Fundamentals of Power Electronics


11

Chapter 5: Discontinuous conduction mode

TENNESSEE T

Solving M(D,K)

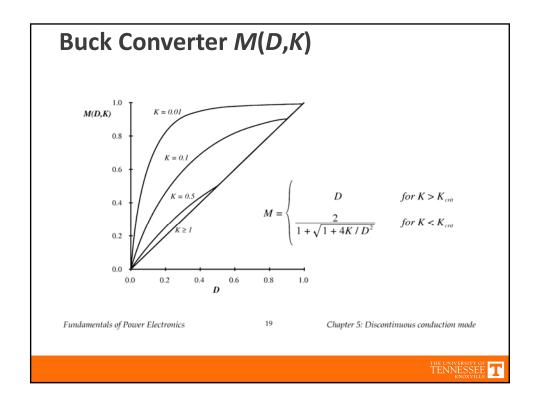
Two equations and two unknowns (V and D_2):

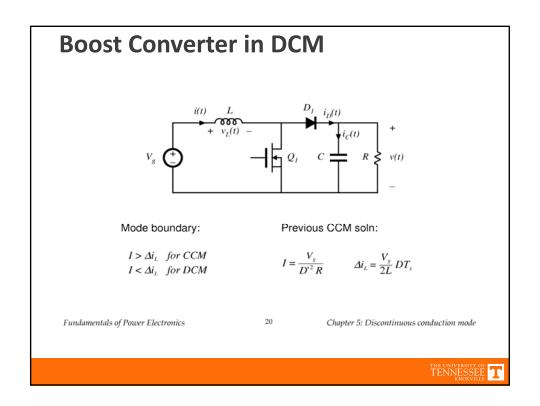
$$V = V_g \frac{D_1}{D_1 + D_2}$$
 (from inductor volt-second balance)

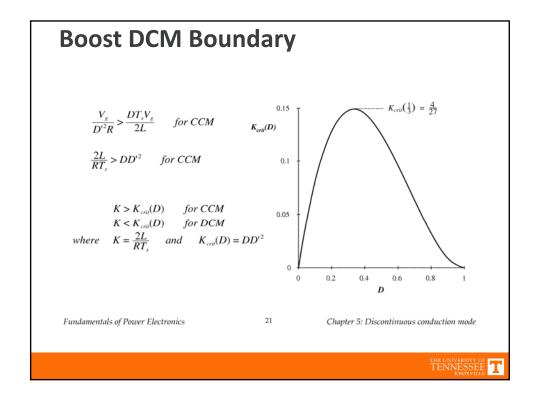
$$\frac{V}{R} = \frac{D_1 T_s}{2L} \left(D_1 + D_2 \right) \left(V_s - V \right) \qquad \text{(from capacitor charge balance)}$$

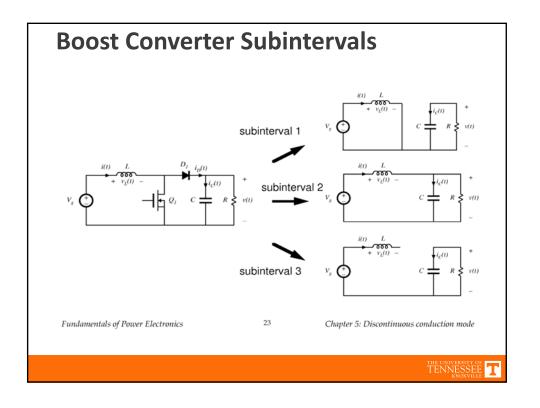
Eliminate D_2 , solve for V:

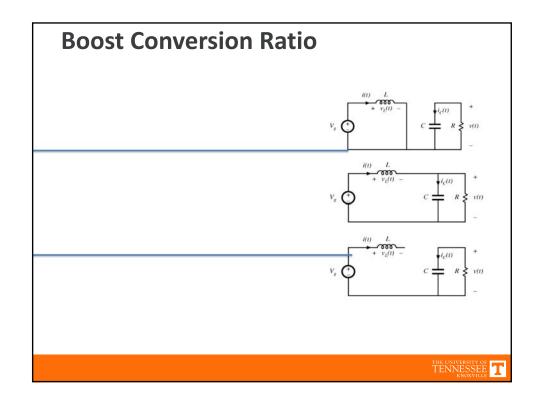
$$\frac{V}{V_g} = \frac{2}{1 + \sqrt{1 + 4K/D_1^2}}$$
e $K = 2L/RT$

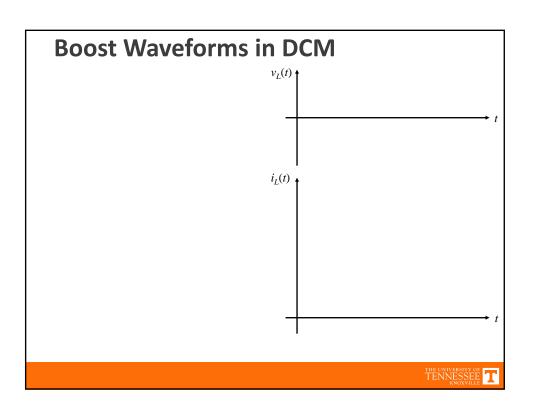

where K = 2L / RTvalid for $K < K_{crit}$

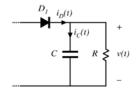

Fundamentals of Power Electronics

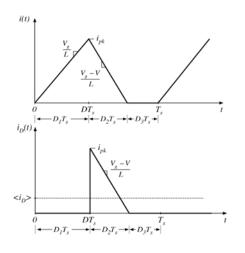

18


Chapter 5: Discontinuous conduction mode









Boost Cap-Charge Balance

Boost DCM Conversion Ratio

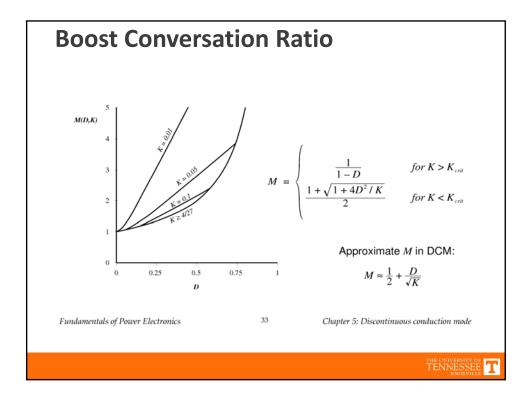
$$V^2 - VV_g - \frac{V_g^2 D_1^2}{K} = 0$$

Use quadratic formula:

$$\frac{V}{V_g} = \frac{1 \pm \sqrt{1 + 4D_1^2 / K}}{2}$$

Note that one root leads to positive V, while other leads to negative V. Select positive root:

$$\frac{V}{V_g} = M(D_1, K) = \frac{1 + \sqrt{1 + 4D_1^2 / K}}{2}$$


 $K = 2L/RT_s$ $K < K_{crit}(D)$ valid for

Transistor duty cycle $D = \text{interval } 1 \text{ duty cycle } D_1$

Fundamentals of Power Electronics

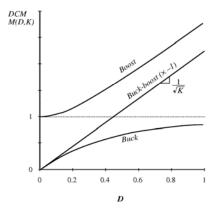
Chapter 5: Discontinuous conduction mode

TENNESSEE T

Summary of DCM Characteristics

Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters

Convener	$K_{crit}(D)$	$DCM\ M(D,K)$	$DCM D_2(D,K)$	CCM M(D)
Buck	(I - D)	$\frac{2}{1+\sqrt{1+4K/D^2}}$	$\frac{K}{D}M(D,K)$	D
Boost	$D(1-D)^2$	$\frac{1 + \sqrt{1 + 4D^2/K}}{2}$	$\frac{K}{D}M(D,K)$	$\frac{1}{1-D}$
Buck-boost	$(1 - D)^2$	$-\frac{D}{\sqrt{K}}$	\sqrt{K}	$-\frac{D}{1-D}$


with $K = 2L / RT_s$, DCM occurs for $K < K_{crit}$.

Fundamentals of Power Electronics

34

Chapter 5: Discontinuous conduction mode

Summary of DCM Characteristics

Fundamentals of Power Electronics

- · DCM buck and boost characteristics are asymptotic to M = 1 and to the DCM buck-boost characteristic
- DCM buck-boost characteristic is linear
- CCM and DCM characteristics intersect at mode boundary. Actual M follows characteristic having larger magnitude
- · DCM boost characteristic is nearly linear

Chapter 5: Discontinuous conduction mode

Chapter 5 Summary

- 1. The discontinuous conduction mode occurs in converters containing current- or voltage-unidirectional switches, when the inductor current or capacitor voltage ripple is large enough to cause the switch current or voltage to reverse polarity.
- 2. Conditions for operation in the discontinuous conduction mode can be found by determining when the inductor current or capacitor voltage ripples and dc components cause the switch on-state current or off-state voltage to reverse polarity.
- 3. The dc conversion ratio M of converters operating in the discontinuous conduction mode can be found by application of the principles of inductor volt-second and capacitor charge
- 4. Extra care is required when applying the small-ripple approximation. Some waveforms, such as the output voltage, should have small ripple which can be neglected. Other waveforms, such as one or more inductor currents, may have large ripple that cannot be ignored.
- 5. The characteristics of a converter changes significantly when the converter enters DCM. The output voltage becomes loaddependent, resulting in an increase in the converter output impedance.

TENNESSEE 1