ECE 481: Power Electronics

Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Fall 2015

ECE 481: Power Electronics

• Instructor: Prof. Daniel Costinett

- Office: MK502

- Telephone: (865) 974-3572

- Email: dcostine@utk.edu

• Please use [ECE481] in the subject line for all course-related e-mails.

- Office Hours: W 1:30-3:00pm, R 9:00-10:00am

Course Materials

- Textbook:
 - Erickson and Maksimovic, Fundamentals of Power Electronics, second edition, Kluwer Academic Publishers, ISBN 0-7923-7270-0
 - Available through campus bookstore, online vendors, or online through UT libraries
- Course Website
- http://web.eecs.utk.edu/~dcostine/ECE481
 - Includes lectures slides, handouts, supplemental notes, homework assignments, course announcements

Assignments

- Homework (40%)
 - Due at beginning of class on date listed on Lecture Schedule web page (Fridays)
 - No late work accepted except in cases of documented emergencies
 - Collaboration is encouraged on all homework assignments
 - must turn in *your own* work
- Exams
 - 1 Midterm: 25% of grade
 - 1 Final: 35% of grade

ECE 481 vs ECE 599

- Students enrolled in ECE 599 will have additional homework and exam problems
- Grading
 - Separate curving for ECE 481 and ECE 599
 - Extra credit is added to final grade after any curving

Piazza Forum

- New resource for ECE 481 this semester
- · Additional method for collaborating on HW

How to Succeed in ECE 481

- Attend all lectures
 - Participate; ask questions or ask for clarification
- · Read textbook for clarification
- Complete all homework assignments
 - Work together in-person or using Piazza
 - Attempt homework alone prior to collaborating
 - Review and understand mistakes
 - ~12 assignments for 40% of the grade

Part I: Converters in Equilibrium 2. Principles of steady state converter analysis 3. Steady-state equivalent circuit modeling, losses, and efficiency 4. Switch realization 5. The discontinuous conduction mode 6. Converter circuits Fundamentals of Power Electronics 27 Chapter 1: Introduction

