ECE 481: Power Electronics

Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Fall 2015

ECE 481: Power Electronics

• Instructor: Prof. Daniel Costinett

- Office: MK502

- Telephone: (865) 974-3572

– Email: dcostine@utk.edu

• Please use [ECE481] in the subject line for all course-related e-mails.

- Office Hours: W 1:30-3:00pm, R 9:00-10:00am

Course Materials

- Textbook:
 - Erickson and Maksimovic, Fundamentals of Power Electronics, second edition, Kluwer Academic Publishers, ISBN 0-7923-7270-0
 - Available through campus bookstore, online vendors, or online through UT libraries
- **Course Website**
 - http://web.eecs.utk.edu/~dcostine/ECE481
 - Includes lectures slides, handouts, supplemental notes, homework assignments, course announcements

Assignments

- Homework (40%)
 - Due at beginning of class on date listed on Lecture Schedule web page (Fridays)
 - No late work accepted except in cases of documented emergencies
 - Collaboration is encouraged on all homework assignments
 - must turn in *your own* work
- Exams

- 1 Midterm: 25% of grade

- 1 Final: 35% of grade

TENNESSEE T

ECE 481 vs ECE 599

- Students enrolled in ECE 599 will have additional homework and exam problems
- Grading
 - Separate curving for ECE 481 and ECE 599
 - Extra credit is added to final grade after any curving

Piazza Forum

- New resource for ECE 481 this semester
- · Additional method for collaborating on HW

How to Succeed in ECE 481

- Attend all lectures
 - Participate; ask questions or ask for clarification
- · Read textbook for clarification
- Complete all homework assignments
 - Work together in-person or using Piazza
 - Review and understand mistakes
 - ~12 assignments for 40% of the grade

Power Electronics Courses at UTK Senior Graduate Junior ECE 523 **ECE 325** ECE 623 ECE 481 **Advanced Power** Electric Energy System Power Electronics and **Power Electronics** Drives **Electronics and Drives** Components ECE 482 ECE 525 ECE 625 **Power Electronic** Alternative Energy **Utility Applications of** Circuits Sources **Power Electronics** ECE 581 **ECE 626** High Frequency Power Solid State Power Electronics Semiconductors TENNESSEE T

Controlling Duty Cycle

D = switch duty cycle $0 \le D \le 1$

 T_s = switching period

 f_s = switching frequency $= 1 / T_s$

DC component of $v_s(t)$ = average value:

$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) dt = DV_s$$

Addition of Low Pass Filter

Addition of (ideally lossless) L-C low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency f_0 much smaller than switching
- This circuit is known as the "buck converter"

frequency f_s

TENNESSEE T

Part I: Converters in Equilibrium 2. Principles of steady state converter analysis 3. Steady-state equivalent circuit modeling, losses, and efficiency 4. Switch realization 5. The discontinuous conduction mode 6. Converter circuits Fundamentals of Power Electronics 27 Chapter 1: Introduction

