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Chapter 8 Summary

1. The magnitude Bode diagrams of functions which vary as (f/ f,)n
have slopes equal to 20 dB per decade, and pass through 0dB at
f=fo-

2. Itis good practice to express transfer functions in normalized pole-
zero form; this form directly exposes expressions for the salient
features of the response, i.e., the corner frequencies, reference
gain, etc.

3. The right half-plane zero exhibits the magnitude response of the
left half-plane zero, but the phase response of the pole.

4. Poles and zeroes can be expressed in frequency-inverted form,
when it is desirable to refer the gain to a high-frequency asymptote.
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Chapter 8 Summary

5. Atwo-pole response can be written in the standard normalized
form of Eq. (8-53). When Q > 0.5, the poles are complex
conjugates. The magnitude response then exhibits peaking in the
vicinity of the corner frequency, with an exact value of Q at f= f,.
High Q also causes the phase to change sharply near the corner
frequency.

6. When the Q is less than 0.5, the two pole response can be plotted
as two real poles. The low- Q approximation predicts that the two
poles occur at frequencies f,/ Q and Qf,. These frequencies are
within 10% of the exact values for Q < 0.3.

7. The low- Q approximation can be extended to find approximate
roots of an arbitrary degree polynomial. Approximate analytical
expressions for the salient features can be derived. Numerical
values are used to justify the approximations.
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Chapter 8 Summary

8. Salient features of the transfer functions of the buck, boost, and buck-
boost converters are tabulated in section 8.2.2. The line-to-output
transfer functions of these converters contain two poles. Their control-
to-output transfer functions contain two poles, and may additionally
contain a right half-pland zero.

9. Approximate magnitude asymptotes of impedances and transfer
functions can be easily derived by graphical construction. This
approach is a useful supplement to conventional analysis, because it
yields physical insight into the circuit behavior, and because it
exposes suitable approximations. Several examples, including the
impedances of basic series and parallel resonant circuits and the
transfer function H (s) of the boost and buck-boost converters, are
worked in section 8.3.
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Chapter 9: Controller Design

9.1. Introduction

9.2. Effect of negative feedback on the network transfer
functions

9.2.1. Feedback reduces the transfer function from disturbances
to the output

9.2.2. Feedback causes the transfer function from the reference
input to the output to be insensitive to variations in the gains
in the forward path of the loop

9.3. Construction of the important quantities 1/(1+7) and
T/(1+7) and the closed-loop transfer functions

Fundamentals of Power Electronics 1 Chapter 9: Controller design

THE UNIVERSITY OF

TENNESSEE [g g

KNOXVILLE

Chapter 9: Controller Design

9.4. Stability

9.4.1. The phase margin test

9.4.2. The relation between phase margin and closed-loop
damping factor

9.4.3. Transient response vs. damping factor
9.5. Regulator design

9.5.1. Lead (PD) compensator

9.5.2. Lag (PI) compensator

9.5.3. Combined (PID) compensator

9.5.4. Design example
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Closed-Loop Regulation
Power Switching converter Load
input
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Open-Loop Behavior

Small signal model: open-loop converter

e(s)tf(s) L
1:M(D ¢
~ D)
0 Q ivds c==
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Output voltage can be expressed as
0(5) = G,() d(5) + G, (8) (8) = Z,u(5) F1a(5)

where
D(s) V(s
G(s) = 2O G,(s) = 1) z
d(s) | re=0 P(5) | 2-0
{10aa=0 {10ad =0
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Small-Signal Closed-Loop Model
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Block Diagram
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Closed-Loop Transfer Functions
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