

Determining Stability From T(s)

- · Nyquist stability theorem: general result.
- · A special case of the Nyquist stability theorem: the phase margin test

Allows determination of closed-loop stability (i.e., whether 1/(1+T(s))contains RHP poles) directly from the magnitude and phase of T(s).

A good design tool: yields insight into how T(s) should be shaped, to obtain good performance in transfer functions containing 1/(1+T(s))

margin test is valid if:

(1) fc => 11 T(jirfe)||=1 is uniquely defined. (2) T(5) has no RHP poles

Fundamentals of Power Electronics

Chapter 9: Controller design

9.4.1 - The Phase Margin Test

* Phose Margin = 9m = 180° + 4 T (jwe)

A test on T(s), to determine whether 1/(1+T(s)) contains RHP poles.

The crossover frequency f_c is defined as the frequency where

$$||T(j2\pi f_c)|| = 1 \Rightarrow 0$$
dB

The phase margin φ_{m} is determined from the phase of T(s) at f_{c} , as follows:

$$\varphi_m = 180^\circ + \angle T(j2\pi f_c)$$

If there is exactly one crossover frequency, and if T(s) contains no RHP poles, then

the quantities T(s)/(1+T(s)) and 1/(1+T(s)) contain no RHP poles whenever the phase margin φ_m is positive.

Fundamentals of Power Electronics

Chapter 9: Controller design

Selecting Phase Margin

How much phase margin is required?

A small positive phase margin leads to a stable closed-loop system having complex poles near the crossover frequency with high $\it Q$. The transient response exhibits overshoot and ringing.

Increasing the phase margin reduces the Q. Obtaining real poles, with no overshoot and ringing, requires a large phase margin.

The relation between phase margin and closed-loop ${\it Q}$ is quantified in this section.

Fundamentals of Power Electronics

Chapter 9: Controller design

Step Response of Second-Order System

TENNESSEE T

Q vs. φ_m

Solve for exact crossover frequency, evaluate phase margin, express as function of $\phi_{\it m}$. Result is:

$$Q = \frac{\sqrt{\cos \varphi_m}}{\sin \varphi_m}$$

$$\varphi_m = \tan^{-1} \sqrt{\frac{1 + \sqrt{1 + 4Q^4}}{2Q^4}}$$

Fundamentals of Power Electronics

Chapter 9: Controller design

Design Approach

- Assume $G_c(s) = 1$, and plot the resulting uncompensated loop gain $T_u(s)$
- Examine uncompensated loop gain to determine the needs of the compensator
 - Is low-frequency gain amplitude large enough to result in low steadystate error?
 - Is ϕ_m sufficient for stability and requirements on ringing/overshoot?
 - Is f_c high enough for a sufficiently fast response?
- Construct compensator to address shortcomings of T_u(s)
 - Use "toolbox" of compensators on following slides

T(s)
w) our designed
- Ge(s)

TENNESSEE 1