

Design Approach

- Assume $G_c(s) = 1$, and plot the resulting uncompensated loop gain $T_u(s)$
- Examine uncompensated loop gain to determine the needs of the compensator
 - Is low-frequency gain amplitude large enough to result in low steadystate error?
 - Is ϕ_m sufficient for stability and requirements on ringing/overshoot?
 - Is f_c high enough for a sufficiently fast response?
- Construct compensator to address shortcomings of $T_u(s)$
 - Use "toolbox" of compensators on following slides

T(s)
w) our designed
u) Ge(s)

TENNESSEE 1

