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Reference Step Response
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Chapter 9: Summary

1. Negative feedback causes the system output to closely follow the
reference input, according to the gain 1/H(s). The influence on the
output of disturbances and variation of gains in the forward path is
reduced.

2. The loop gain T(s) is equal to the products of the gains in the
forward and feedback paths. The loop gain is a measure of how well
the feedback system works: a large loop gain leads to better
regulation of the output. The crossover frequency f. is the frequency
at which the loop gain T has unity magnitude, and is a measure of
the bandwidth of the control system.

Fundamentals of Power Electronics 72 Chapter 9: Controller design
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Chapter 9: Summary

3. The introduction of feedback causes the transfer functions from
disturbances to the output to be multiplied by the factor 1/(1+7(s)). At
frequencies where T is large in magnitude (i.e., below the crossover
frequency), this factor is approximately equal to 1/7(s). Hence, the
influence of low-frequency disturbances on the output is reduced by a
factor of 1/7(s). At frequencies where T is small in magnitude (i.e.,
above the crossover frequency), the factor is approximately equal to 1.
The feedback loop then has no effect. Closed-loop disturbance-to-
output transfer functions, such as the line-to-output transfer function or
the output impedance, can easily be constructed using the algebra-on-
the-graph method.

is evaluated at the crossover frequency, and the stability of the
important closed-loop quantities 7/(1+7) and 1/(1+7) is then deduced.
Inadequate phase margin leads to ringing and overshoot in the system
transient response, and peaking in the closed-loop transfer functions.

Fundamentals of Power Electronics 73 Chapter 9: Controller design
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Chapter 9: Summary

5. Compensators are added in the forward paths of feedback loops to
shape the loop gain, such that desired performance is obtained.
Lead compensators, or PD controllers, are added to improve the
phase margin and extend the control system bandwidth. P/
controllers are used to increase the low-frequency loop gain, to
improve the rejection of low-frequency disturbances and reduce the
steady-state error.

6. Loop gains can be experimentally measured by use of voltage or
current injection. This approach avoids the problem of establishing
the correct quiescent operating conditions in the system, a common
difficulty in systems having a large dc loop gain. An injection point
must be found where interstage loading is not significant. Unstable
loop gains can also be measured.

Fundamentals of Power Electronics 74 Chapter 9: Controller design
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Summary: Effect of Phase Margin
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Effect of Bandwidth
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Part lll: Magnetics

* Ch 13 Basic Magnetics Theory
* Ch 14 Inductor Design
* Ch 15 Transformer Design
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Chapter 13: Basic Magnetics Theory

13.1 Review of Basic Magnetics

13.1.1 Basic relationships 13.1.2 Magnetic circuits
13.2 Transformer Modeling
13.2.1 The ideal transformer 13.2.3 Leakage inductances

13.2.2 The magnetizing inductance
13.3 Loss Mechanisms in Magnetic Devices

13.3.1 Core loss 13.3.2 Low-frequency copper loss
13.4 Eddy Currents in Winding Conductors

13.4.1 Skin and proximity effects 13.4.4 Power loss in a layer

13.4.2 Leakage flux in windings 13.4.5 Example: power loss in a
transformer winding

13.4.3 Foil windings and layers  13.4.6 Interleaving the windings
13.4.7 PWM waveform harmonics

Fundamentals of Power Electronics 2 Chapter 13: Basic Magnetics Theory

THE UNIVERSITY OF

TENNESSEE [g g

KNOXVILLE

Basic Magnetics Relationships

Faraday’s law

V(1) - » B(1), (1)

Terminal Core
characteristics characteristics

i(t) - » H(t), 7(1)

Ampere’s law

Fundamentals of Power Electronics 4 Chapter 13: Basic Magnetics Theory
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Electric/Magnetic Duals
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