

Electric/Magnetic Duals

TENNESSEE T

Faraday's Law

Voltage v(t) is induced in a loop of wire by change in the total flux $\Phi(t)$ passing through the interior of the loop, according to

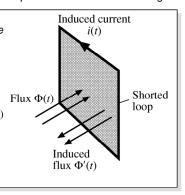
$$v(t) = \frac{d\Phi(t)}{dt}$$

For uniform flux distribution, $\Phi(t) = B(t)A_c$ and hence

$$v(t) = A_c \frac{dB(t)}{dt}$$

Area A_c

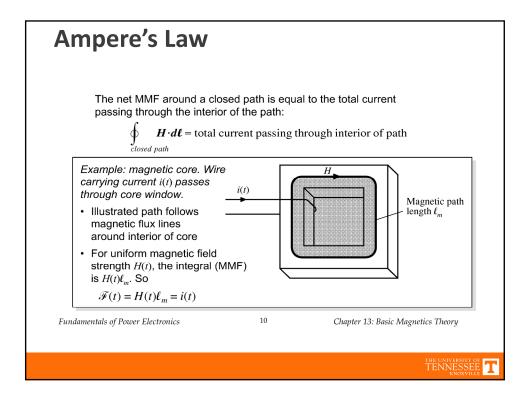
Fundamentals of Power Electronics

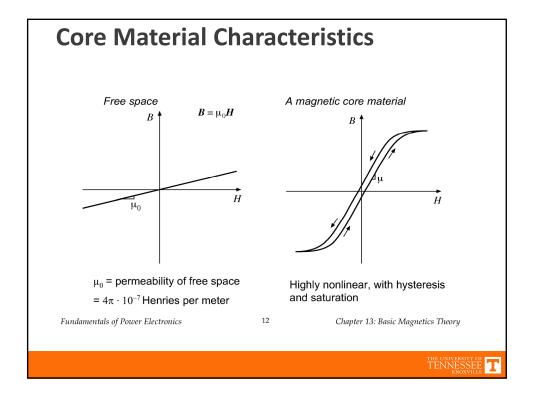

Chapter 13: Basic Magnetics Theory

Lenz's Law

The voltage v(t) induced by the changing flux $\Phi(t)$ is of the polarity that tends to drive a current through the loop to counteract the flux change.

Example: a shorted loop of wire


- Changing flux $\Phi(t)$ induces a voltage v(t) around the loop
- · This voltage, divided by the impedance of the loop conductor, leads to current i(t)
- This current induces a flux $\Phi'(t)$, which tends to oppose changes in $\Phi(t)$



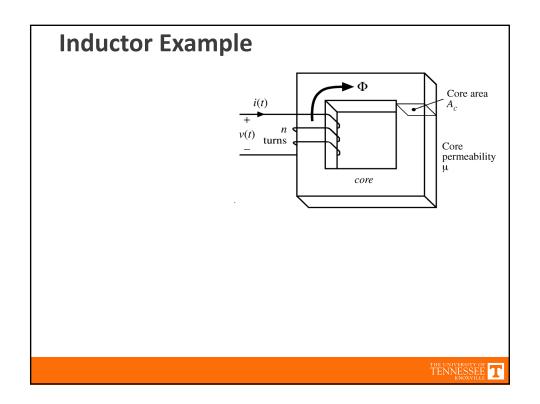
Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory

TENNESSEE T

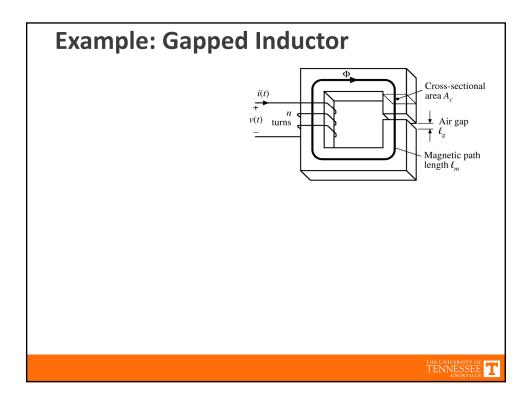
Units

Table 12.1. Units for magnetic quantities


quantity	MKS	unrationalized cgs	conversions
core material equation	$B = \mu_0 \; \mu_{\rm r} \; H$	$B = \mu_{\rm r} H$	
B	Tesla	Gauss	$1T = 10^4 G$
H	Ampere / meter	Oersted	$1A/m = 4\pi \cdot 10^{-3} \text{ Oe}$
Φ	Weber	Maxwell	$1Wb = 10^8 Mx$ $1T = 1Wb / m^2$

 $Fundamentals\ of\ Power\ Electronics$

14


Chapter 13: Basic Magnetics Theory

Magnetic Circuits	
	THE UNIVERSITY OF TENNESSEE
	KNOXVILLE

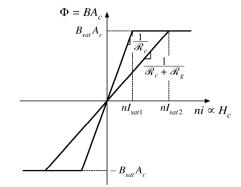
Inductor Magnetic Circuit Model		
	THE UNIVERSITY OF ΓΕΝΝΕSSEE	

Gapped Inductor Magnetic Circuit

Effect of Air Gap

$$ni = \Phi\left(\mathcal{R}_c + \mathcal{R}_g\right)$$

$$L = \frac{n^2}{\mathcal{R}_c + \mathcal{R}_s}$$


$$\Phi_{sat} = B_{sat}A_c$$

$$I_{sat} = \frac{B_{sat}A_c}{n} \left(\mathcal{R}_c + \mathcal{R}_g \right)$$

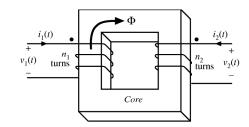
Effect of air gap:

- · decrease inductance
- · increase saturation current
- · inductance is less dependent on core permeability

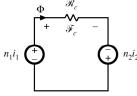
 $Fundamentals\ of\ Power\ Electronics$

26

Chapter 13: Basic Magnetics Theory


Transformer Example

Two windings, no air gap:


$$\mathcal{R} = \frac{\ell_m}{\mu A_c}$$

$$\mathcal{F}_c = n_1 i_1 + n_2 i_2$$

$$\Phi \mathcal{R} = n_1 i_1 + n_2 i_2$$

Magnetic circuit model:

Fundamentals of Power Electronics

27

Chapter 13: Basic Magnetics Theory

TENNESSEE T