Announcements

- SAIS open now
- Friday, November 20, 2015 12-2:30pm Min Kao Room 121

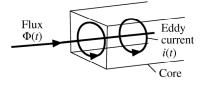
CURENT Open House Refreshments Pizza and Drinks Provided Starting at Noon Research Opportunites Graduate School Funding Benefits of CURENT Visualization Room Power Electronics Lab High Power Electronics Lab Hardware Testbed FNET Discover the Exciting Applications of Power and Power Electronics in Grid, IT, EV, Renewables, and more!

RSVP to Help Us Order Pizza!

TENNESSEE

Eddy Currents in Magnetic Materials

Magnetic core materials are reasonably good conductors of electric current. Hence, according to Lenz's law, magnetic fields within the core induce currents ("eddy currents") to flow within the core. The eddy currents flow such that they tend to generate a flux which opposes changes in the core flux $\Phi(t)$. The eddy currents tend to prevent flux from penetrating the core.



Eddy current loss $i^2(t)R$

Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory

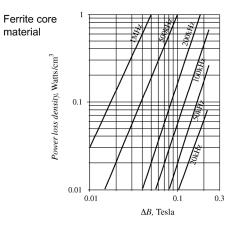
Eddy Current Losses

- Ac flux $\Phi(t)$ induces voltage v(t) in core, according to Faraday's law. Induced voltage is proportional to derivative of $\Phi(t)$. In consequence, magnitude of induced voltage is directly proportional to excitation frequency f.
- If core material impedance Z is purely resistive and independent of frequency, Z = R, then eddy current magnitude is proportional to voltage: i(t) = v(t)/R. Hence magnitude of i(t) is directly proportional to excitation frequency f.
- Eddy current power loss $i^2(t)R$ then varies with square of excitation
- · Ferrite core material impedance is capacitive. This causes eddy current power loss to increase as f^4 .

Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory

The Steinmetz Equation



fixed frequency:

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Empirical equation, at a

Alternately:

$$P_v = K_m f^{\alpha} (\Delta B)^{\beta}$$

 $Fundamentals\ of\ Power\ Electronics$

41

Chapter 13: Basic Magnetics Theory

Steinmetz Equation: Notes

- Purely empirical; not physics-based
- Parameters α , β , K vary with frequency
- Correct only for sinusoidal excitation
 - Nonlinear; Fourier expansion of waveforms cannot be used
- Modified empirical equations perform better with nonsinusoidal waveforms
 - MSE
 - GSE
 - iGSE
 - i²GSE

Some Example Core Materials

Core type	B_{scat}	Relative core loss	Applications
Laminations iron, silicon steel	1.5 - 2.0 T	high	50-60 Hz transformers, inductors
Powdered cores powdered iron, molypermalloy	0.6 - 0.8 T	medium	1 kHz transformers, 100 kHz filter inductors
Ferrite Manganese-zinc, Nickel-zinc	0.25 - 0.5 T	low	20 kHz - 1 MHz transformers, ac inductors

Fundamentals of Power Electronics

4

Chapter 13: Basic Magnetics Theory

DC resistance of wire

$$R = \rho \, \frac{\ell_b}{A_{\cdots}}$$

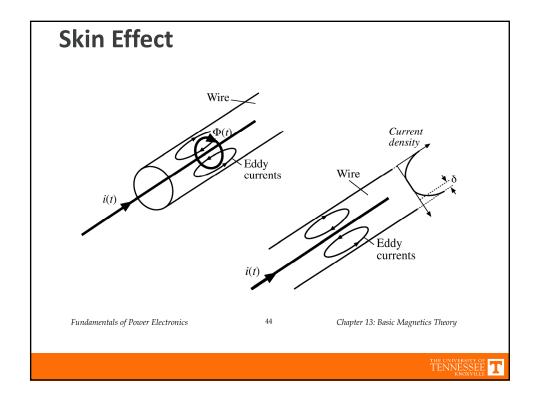
where A_w is the wire bare cross-sectional area, and ℓ_{b} is the length of the wire. The resistivity ρ is equal to $1.724 \cdot 10^{-6}~\Omega~cm$ for soft-annealed copper at room temperature. This resistivity increases to $2.3 \cdot 10^{-6} \Omega$ cm at 100 °C.

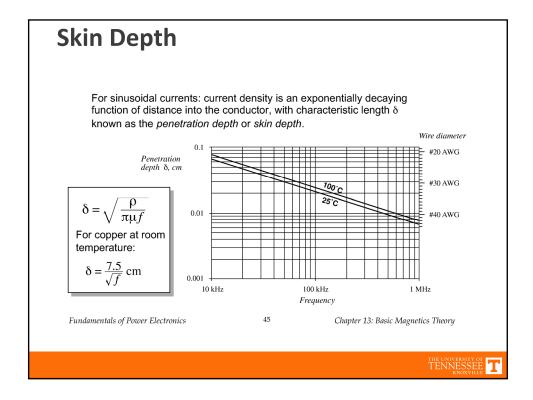
The wire resistance leads to a power loss of

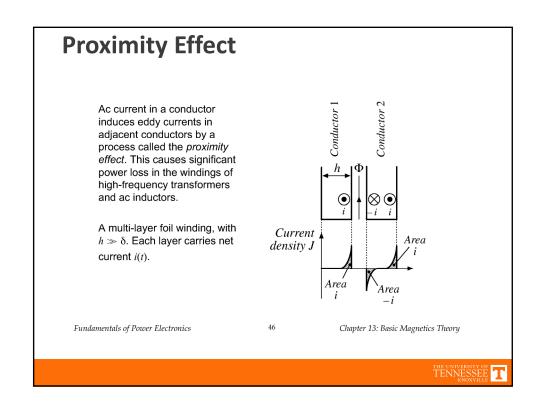
$$P_{cu} = I_{rms}^2 R$$

Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory







Two-Winding Transformer Example

Cross-sectional view of two-winding transformer example. Primary turns are wound in three layers. For this example, let's assume that each layer is one turn of a flat foil conductor. The secondary is a similar three-layer winding. Each layer carries net current i(t). Portions of the windings that lie outside of the core window are not illustrated. Each laver has thickness $h \gg \delta$.

Core • \odot \odot \otimes \otimes \otimes Layer 1

Primary winding

Secondary winding

Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory

Current Distribution

Skin effect causes currents to concentrate on surfaces of conductors

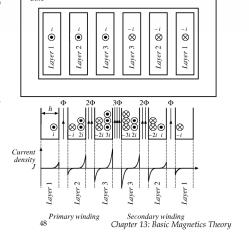
Surface current induces equal and opposite current on adjacent conductor

This induced current returns on opposite side of conductor

Net conductor current is equal to i(t) for each layer, since layers are connected in series

Circulating currents within layers increase with the numbers of layers

Fundamentals of Power Electronics



High Frequency Estimation

The current i(t) having rms value I is confined to thickness d on the surface of layer 1. Hence the effective "ac" resistance of layer 1 is:

$$R_{ac} = \frac{h}{\delta} R_{dc}$$

This induces copper loss P_{I} in layer 1:

$$P_1 = I^2 R_{ac}$$

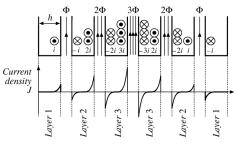
Power loss P_2 in layer 2 is:

$$P_2 = P_1 + 4P_1 = 5P_1$$

Power loss P_3 in layer 3 is:

$$P_3 = \left(2^2 + 3^2\right)P_1 = 13P_1$$

Fundamentals of Power Electronics



Primary winding

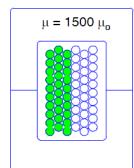
Secondary winding

Power loss P_m in layer m is:

$$P_m = I^2 \left| \left(m - 1 \right)^2 + m^2 \right| \left(\frac{h}{\delta} R_{dc} \right)$$

Chapter 13: Basic Magnetics Theory

Simulation Example



- AWG#30 copper wire
 - Diameter d = 0.294 mm
 - $d = \delta$ at around 50 kHz
- 1:1 transformer
 - · Primary and secondary are the same, 30 turns in 3 layers
- Sinusoidal currents,

$$I_{1rms} = I_{2rms} = 1 \text{ A}$$

Numerical field and current density solutions using FEMM (Finite Element Method Magnetics), a free 2D solver, http://www.femm.info/wiki/HomePage

