Announcements

- SAIS open now please fill it out
 - Remaining students:
 - - 15 9 in 481
 - - 2 0 in 599
- Final Exam:
 - Posted online after final class
 - Due before end of scheduled exam time
 - Monday, Dec 7th, 10:00 am

Discussion

 $K_g = \frac{A_c^2 W_A}{(MLT)} \ge \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u}$ K_{g} is a figure-of-merit that describes the effective electrical size of magnetic cores, in applications where the following quantities are specified:

- · Copper loss
- · Maximum flux density

How specifications affect the core size:

A smaller core can be used by increasing

 $B_{max} \Rightarrow$ use core material having higher B_{sat}

 $R \Rightarrow$ allow more copper loss

How the core geometry affects electrical capabilities:

A larger K_{σ} can be obtained by increase of

 $A_c \Rightarrow$ more iron core material, or

 $W_A \Rightarrow$ larger window and more copper

Fundamentals of Power Electronics

Chapter 14: Inductor design

Alternate Applications

- Can be applied to multiple-winding magnetics as long as design goals apply
 - Core loss negligible
 - Saturation is limiting peak flux density
- 14.3 shows how the method changes

TENNESSEE

Chapter 15: Transformer Design

- 15.1 Transformer design: Basic constraints
- 15.2 A step-by-step transformer design procedure
- 15.3 Examples
- 15.4 AC inductor design
- 15.5 Summary

Fundamentals of Power Electronics

2

Chapter 15: Transformer design

THE UNIVERSITY OF TENNESSEE T

Minimizing Total Loss

There is a value of ΔB that minimizes the total power loss

$$P_{tot} = P_{fe} + P_{cu}$$

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{\Delta B}\right)$$

Fundamentals of Power Electronics

Chapter 15: Transformer design

Calculation of Total Loss

Substitute optimum ΔB into expressions for P_{cu} and P_{fe} . The total loss is:

$$P_{tot} = \left[A_c \ell_m K_{fe}\right]^{\left(\frac{2}{\beta+2}\right)} \left[\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u} \ \frac{(MLT)}{W_A A_c^2}\right]^{\left(\frac{\beta}{\beta+2}\right)} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]$$

Rearrange as follows:

Left side: terms depend on core geometry

Right side: terms depend on specifications of the application

Fundamentals of Power Electronics

Chapter 15: Transformer design

The K_{gfe} Method

$$K_{gfe} = \frac{W_A \left(A_c\right)^{\left(2(\beta-1)/\beta\right)}}{(MLT)\ell_m^{\left(2/\beta\right)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$

Design procedure: select a core that satisfies

$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u (P_{tot})^{((\beta+2)/\beta)}}$$

Appendix D lists the values of K_{gfe} for common ferrite cores

 $K_{\it gfe}$ is similar to the $K_{\it g}$ geometrical constant used in Chapter 14:

- K_{g} is used when B_{max} is specified
- K_{gfe} is used when ΔB is to be chosen to minimize total loss

Fundamentals of Power Electronics

10

Chapter 15: Transformer design

ENNESSEE 1

Т

The K_{gfe} Method

$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u (P_{tot})^{((\beta+2)/\beta)}} 10^8$$

$$\Delta B = \left[10^8 \ \frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \ \frac{(MLT)}{W_A A_c^3 \ell_m} \ \frac{1}{\beta K_{fe}} \right]^{\left(\frac{1}{\beta+2}\right)}$$

$$n_1 = \frac{\lambda_1}{2\Delta B A_c} \quad 10^4 \qquad \qquad n_k = n_1 \frac{n_k}{n_1}$$

$$\alpha_k = \frac{n_k I_k}{n_1 I_{tot}} \qquad A_{wk} \le \frac{\alpha_2 K_u W_A}{n_2}$$

Verify $B_{max} < B_{sat}$

ESSEE 1