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L Switching frequency -han
+ As switching frequency is » As switching frequency is &
increased from 25 kHz to increased from 400 kHz to <Y »
250 kHz, core size is 1 MHz, core size
dramatically reduced increases
Fundamentals of Power Electronics 24 Chapter 15: Transformer design
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Practical Issues in PE: Parasitics

z

Use loop analysis

Y =4
0 1" switched input current i,(t) contains large
Loan A high frequency harmonics
— —hence inductance of input loop is critical
o 1;) = inductance causes ringing, voltage spikes,
coidicls  sondocti , switching loss, generation of B- and E-
is(t) | fields, radiated EMI
.,lw_"'L ; the second loop contains a filter inductor,
' and hence its current i,(t) is nearly dc

N —hence additional inductance is not a
AL W significant problem in the second loop
=
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Decoupling

Parasitic inductances of input loop explicitly shown:

Addition of bypass capacitor confines the pulsating current to a smaller

loop:
. lows im'}.dw C K¥ I .
high frequency currents are shunted through capacitor instead ot input
source
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Real Switching Waveforms o oo
o O

0&(

P - N .
Botly diode conduction 4—-V_L—§~ ¥ =
—_—
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Input Filter Design
th 10
16,41
—HEO)— 30dB
Input Converter o
; fiter | 26 Z) | \gyum 0 10dB
-10dB
t EMT
‘(,'_\\»J
100 Hz 1kHz 10 kHz ’
!
- Filter can seriously degrade converter control system behavior
« Use extra element theorem to derive conditions which ensure that converter
dynamics are not affected by input filter
+ Must design input filter having adequate damping

TENNESSEE[BY
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Damped Input Filters

Design criteria derived via Extra
Element theorem:

Two-section damped input filter

design: Dens red -

30dBe 12,1 ‘ ‘ ‘ Ry ml, Ry ml,
AT D L 065Q 29uH 199 156 pH
7 AN — T
20 dBQ LT 7500
w P Cascaded L,58pH Ly 312pH
10 4B il m:d 2 N C) C C) e
U AT+ N Secton | e 117 uF 6.9 uF
- i .'\’ =
0dBQ /
. h ,
-10 dBQ ™ kt&,lanﬁ} H]
N
| ZGon | = | ZyGion |
20 dBQ. . - N
1kHz 10 kHz 100 kHz H Z(j) | = | Zp(jw) "
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Buck converter -

if0) o A

14T ¥

T Ql l

V() A b, v & R
t}_

Measure < T
switch i (1)
current
Clock
0T,
iR, s a
R
) Analog Larch
i (R, comparator
Comtrt Current-programmed controller

‘ompensator vt)
Ve

Conventional output voltage controller

Current Programmed Control ™= -
\[8 /v

- Chapter 12

- Avery popular method for
controlling PWM converters

« Transistor turns off when its
current i (¢) is equal to the
control input i (¢)

« Simpler dynamics, more
robust compensator -

Control signatl
i1

my Switch
v~ current
i1)

0 AT, T, t
Transistor | i i
srarus: | on i off

Clock turns Comparaior turns
transistor on transistor off
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Buck Converter With CPM

Comparison of control-to-output Averaged switch model used in
transfer functions PSPICE simulations
ADE; 1 2 L 3i R 4 foan
Gl LG il { 35 uH 0050 s
2048 v, 1Ty |, cl &
0dB LAY 4{;7 g {:igo;lz IDOPFI 0o
= EDH - =
10 - X,
1 i
R=10
. CPM ,jf; 200 kHz
=0, control current 1 2 ff:; :Hv
-180° Reip | w1)-w(3) w3)
10Hz 100 Hz 1kHz 10 kHz 100 kHz v, E, E[+] E[*
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Digital Control of SMPS

[E)buck_discrete_design
Fie Edt View Smulation Format Tools Help

DSES srB@ (2| ) s |[HESw| hE TR

* Digital Control can improve
noise immunity, element

Closed-loop digitally-controlled symmunuus buck switching converter model

_ £C 2005 variation, size/cost
Set parameters by running A .
buck_design_setup.m * Advanced tuning algorithms
(or your own design setup file) Inputvoltage .
— can be included to change
( Digital PWM o N

s I = I e |:| compensator dynamically or
Dw'vlh%_ua'mg =5 o - over lifetime
e =we* Can model power stage
without averaging

assumptions

Gain * Need to include sampling,

Seoret Load resistor A/D ¢ ETiET .
H S comverter delay, saturation, and
m quantization effects
Compansator AD uuaah!er Zem o,.“, Dalay Caonstant

L\ mits gad Vref

Discrete-time

compensator M t“ﬂﬁ l
Ready 115% | odedS
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| 2
d I il I J_
sourf;e; C*) “ [ v(t) }’ R

Resonant and Soft-Switching Topologies

— 1

Switch network Resonant tank network Switch network  Low-pass  dc
filter load
! network
Fundamental component 1 el
v, e s
" RYAR0 /\

— Y ' ey
s SO
: < 0.0, 0D bD DD

. Vg n, D, DD, D, D, D, D,

b0

Converters with Significant ZVS Interval
Dl Adne Vw;a%‘

R g e

I:n,

—.’_’
VgC_D L vp -éH . :; C{)ut:: E:l Pm”
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Junior

ECE 325 \/
Electric Energy System
Components

Power Electronics Courses at UTK

+amore WBH

Senior | Graduate
1
I
I
ECE 481 : ECE 523. ECE 623
. || Power Electronics and Advanced Power
Power Electronics 1 . . .
[ Drives Electronics and Drives
I
ECE 482 i ECE525 =--ff? ECE 625
Power Electronic : Alternative Energy Utility Applications of
Circuits : Sources ower Electronics
Y 1
V—‘“"" A7 Anirs!
(o Ad 1 \® L0t
X ! ECE 581 ear™” ECE 626
\|High Frequency Power Solid State Power
| Electronics Semiconductors
1
1
: ECE692 ——f—®  ECE 692
1 ey
'|  Power Electronics Power Electronics
! Technologies | Technologies I\
1
1
1
1
1

THE UNIVERSITY OF

TENNESSEE [g g

KNOXVILLE

APPLICATION OF ECE481 THEORY
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Example: Low-Power AC Adapters

Apple “Ultracompact USB
Power Adapter”

Design Constraints:

Single converter needs power
stage which can operate over
wide input voltage range

For V,.=+5V (USB output) need
very large step-down capability
(M =0.018)

Isolation may be necessary for
safety

Fairchild Semi, “Design Guideline of Single-Stage Flyback AC-DC Converter Using

Goals:
* Produce regulated DC Voltage from

universal input (85 to 276 Vrms, 47-63 Hz)
e———

¢ Maintain high power factor / Low EMI

* High efficiency to allow small size
o lou Gest !

EMT
@] 1"llter ‘*
Vae
BD

g |

Figure 1.  Single-Stage AC-DC Converter

FAN7530 for LED Lighting”
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Flyback Implementation

FAN7530 for LED Lighting”

T 1,
. W g
* Flyback selected as a simple, i
low part-count topology 1
*+ Used almost exclusively in . ij
Ac-to-LVDC applications at me | e - ,
power levels less than ey
~100W 23 e [T | e
* DCM may be used for T
reduced diode RR and
increased f; T Via —
-
N
Al
J erd, gt ¢qrrent
* Pulsating input current
requires filtering Vou
. . ou;
* If unity power factor is
obtained, significant output
I'i pple resu ItS Fairchild Semi, “Design Guideline of Single-Stage Flyback AC-DC Converter Using
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Practical Issue: Ringing in Flyback

Vi v

—Vm

I/n-V/R

—V/R

* Practical transformer implementation
has nonzero leakage inductance

— * When MOSFET switches off, it

interrupts leakage current

0 * Inductor energy dumped into MOSFET

DL~ DT, — ! output capacitance

conducting o, D, * Lossy, high EMI, Potentially can over-
voltage MOSFET Q,
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Snubber Design

* Goal is to provide a path for leakage current to circulate

n DI

v, C_) Lﬁ'%‘é ‘T3
Ak )
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Snubber Design

* Goal is to provide a path for leakage current to circulate

w5

EMI
FILTER
& -t
Viaof

BRIDGE
RECTIFIER

DIODE Co

(a)

L]

(c)

Q,

_|

-

Fig. 1 Simplified circuit diagram of (a) RCD-clamp, (b} NMOS

active-clamp, and () PMOS active-clamp flyback

adapter/charger

‘n

D .

:

L Huber and M Jovanovic, “Evaluation of Flyback Topologies for Notebook
AC/DC Adapter/Charger Applications

KNOXVILLE

Example:
* 5 Watt AC-to-5V adapter

Apple Power Adapter Implementation

K Shirriff, “Apple iPhone charger teardown: quality in a tiny expensive package”
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Apple Circuit Primary

Aux
power Metal  R-C Bf"dﬁe Startup
components shield  snubber diodes R-C Cableto  power
. snubber secondary resistors
Bridge
diode
Control dmiy
inductor
IC
Fusible
resistor

&e .. si '

&
a
g
o
o
a
@&

Electrolytic
filter capacitors

Clamp capacitor Current sense

and diode resistors

Clamp
diode,
transistor,
capacitor

Transformer

Misc
control
components

Transformer
resanance
capacitor

Switching
transistor
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Apple Circuit Secondary

1salation - Tantslum
distance Silicone

filter
capacitors

U
protocol
resistors

insulation

Cable to
primary

~

UsBe

Isolation Filter
inductor

boundary "/

Output

Over-temp
diode

thermistar

Regulation Filter capacitar
components
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Apple Adapter Schematic

)
o
™, T - Tis
e Wme
M FY W Lo ;
b EET :
- L1
1N

JB5 - 0C HI

- fio
18 5 1.GND
T 3% i R ——
ol

)B4 - vCC

© Kien Shiriff 2012
hitpearcin comicharger

Ja2 - OTPIONP
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Example Waveforms

PF=0.997

(a) at 110 Vac Input (b) at 220 Vi Input
Figure 12. Switching Voltage and Current

L Huber and M Jovanovic, “Evaluation of Flyback Topologies for Notebook AC/DC Adapter/Charger Applications
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