FURTHER TOPICS IN POWER
ELECTRONICS
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Use loop analysis

Practical Issues in PE: Parasitics

WEREIL

switched input current i,(t) contains large
high frequency harmonics

0

—hence inductance of input loop is critical

Q

conducts

1L0AD

D,
conducts

~ inductance causes ringing, voltage spikes,
switching loss, generation of B- and E-
fields, radiated EMI

the second loop contains a filter inductor,
and hence its current i,(t) is nearly dc

—hence additional inductance is not a
significant problem in the second loop
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Decoupling

Parasitic inductances of input loop explicitly shown:

1%

loop:

high frequency currents are shunted through capacitor instead of input
source
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Real Switching Waveforms

Reverse recovery cument spike
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Input Filter Design
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f
- Filter can seriously degrade converter control system behavior

- Use extra element theorem to derive conditions which ensure that converter
dynamics are not affected by input filter

- Must design input filter having adequate damping
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Damped Input Filters
Design criteria derived via Extra Two-section damped input filter
Element theorem: design:
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Buck converter
o L i - Chapter 12
5 LTEB
14T +
- o + Avery popular method for
) [ Co= s R controlling PWM converters
- - Transistor turns off when its
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Ptes i t |.S ' ti
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M [ L e npetLY
iR, —Tsa - Simpler dynamics, more
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Buck Converter With CPM

Comparison of control-to-output Averaged switch model used in

transfer functions PSPICE simulations
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Digital Control of SMPS

[Elbuck_discrete_design
File Edit View Simulation Format Tools Help

« Digital Control can improve

DFES s BB (2|) = |[(BSE BRET®

noise immunity, element

Closed-loop digitally-controlled synchranous buck switching corverter madel
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DPWM Quantizer  DPVM " ot T over lifetime
R e o4 uockcomerer swe * Can model power stage

without averaging
assumptions

Seopet ) ssn  * Need to include sampling,
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Resonant and Soft-Switching Topologies

LG

)
! Il )i l +

VO SR

ds
soue () -‘-
;] s

Switch network Resonant tank network Switch network ~ Low-pass ~ dc

filter load
7\/ Fundamental component I,
v Y
L0 )
1

P

network

veln)
¥
w !

s

s
£h

i i /-\

11/29/2015



T e

Converters with Significant ZVS Interval
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APPLICATION OF ECE481 THEORY
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Example: Low-Power AC Adapters

B E Goals:
S * Produce regulated DC Voltage from
= g 1 universal input (85 to 276 Vrms, 47-63 Hz)
> * Maintain high power factor / Low EMI
Apple “Ultracompact USB * High efficiency to allow small size

Power Adapter”

Design Constraints:
* Single converter needs power

stage which can operate over —

wide input voltage range v *
* For V,=+5V (USB output) need w

very large step-down capability

E
l ng* L

v
(M = 0'018) Figure 1. Single-Stage AC-DC Converter
* Isolation may be necessary for
safety

Fairchild Semi, “Design Guideline of Single-Stage Flyback AC-DC Converter Using
FAN7530 for LED Lighting”
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* Flyback selected as a simple,
low part-count topology

* Used almost exclusively in
Ac-to-LVDC applications at
power levels less than
~100W

* DCM may be used for
reduced diode RR and
increased f,

* Pulsating input current
requires filtering

* If unity power factor is
obtained, significant output
ripple results

Flyback Implementation
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.
I. Ll
i
g M~
! ZCi L
'_‘ =
PFC Ql K
Controller b
(FANTS30)
FB ' Tsolation | _ io
— & ol
Ervordmp, [
o Vin .
3
~
X
J T, it ¢yrrent
\4

out|

Fairchild Semi, “Design Guideline of Single-Stage Flyback AC-DC Converter Using
FAN7530 for LED Lighting”
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Practical Issue: Ringing in Flyback

Practical transformer implementation
has nonzero leakage inductance
When MOSFET switches off, it
interrupts leakage current

Inductor energy dumped into MOSFET
output capacitance

Lossy, high EMI, Potentially can over-
voltage MOSFET Q,
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Snubber Design

* Goal is to provide a path for leakage current to circulate
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Snubber Design

* Goal is to provide a path for leakage current to circulate

urt < ¥
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(a)

Fig. 1 Simplified circuit diagram of {a} RCD-clamp, (h)me
aclivo-clamp, and  (c) PMOS  acive-clamp fy L Huber and M Jovanovic, “Evaluation of Flyback Topologies for Notebook

adapter/charger
ad e AC/DC Adapter/Charger Applications
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Example:
* 5 Watt AC-to-5V adapter

Apple Power Adapter Implementation

K Shirriff, “Apple iPhone charger teardown: quality in a tiny expensive package”
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Apple Circuit Primary
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and diode resistors
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Apple Circuit Secondary

Tantalum
filter
capacitors

Is_n\atmn Use
distance

Silicone
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resistors
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primary
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Apple Adapter Schematic
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Example Waveforms

PF=0.997

(a) at 110 V. Input (b) at 220 V. Input
Figure 12. Switching Voltage and Current

L Huber and M Jovanovic, “Evaluation of Flyback Topologies for Notebook AC/DC Adapter/Charger Applications
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