ECE 481: Power Electronics

Prof. Daniel Costinett

Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Fall 2024

Contact Information

- Instructor: Prof. Daniel Costinett
 - Office: MK504
 - Telephone: (865) 974-3572
 - Email: dcostine@utk.edu
 - Please use [ECE481] in the subject line for all course-related e-mails.
 - Office Hours: TBD, or by appointment

Textbook and Materials

- Textbook:
 - Erickson and Maksimovic, Fundamentals of Power Electronics, 3rd edition, Springer, ISBN 3-0304-3879-1
 - 2nd edition acceptable
 - Available through campus bookstore, online vendors, or online through UT libraries
- Course Website
 - http://web.eecs.utk.edu/~dcostine/ECE481
 - Includes lectures slides, handouts, supplemental notes, homework assignments, course announcements

Fundamentals of Power Electronics

Third Edition

Course Website

ECE 202		Home Schedule Materials Assignments Syl	llabus		
	ECE 202: Circuits II				
Course Schedule					
Updated 13:25 January 22, 2024. Tentative lecture scher Monday	lule, including links to lecture slides and notes, and links to assi Wednesday	gnments. The schedule is subject to change, please check frequer Friday	ntly.		
Jan. 22	L1 - Jan. 24	L2 - Jan. 26			
Snow Day	Course Introduction	Mutual Inductance	Mutual Inductance		
	Sections 13.1-13.2 (ignore "phasor" not				
L3 - Jan. 29	L4 - Jan. 31	L5 - Feb. 2			
Coupling Coefficient	Transformer Reflection	Examples of Transformer and Coupled Inductors			
The Transformer Ideal Transformer Model	Transformer Equivalent Circuits Sections 13.4 (ignore "phasor" notation)				
Sections 13.3 (ignore "phasor" notation)		Homework 1 Due	Homework 1 Due		

Grading

- Homework (35%)
 - Weekly, due on Fridays *before* the start of lecture
 - Submitted by uploading a single pdf to canvas
- Midterms and Labs (35%)
 - One midterm
 - ~3 experiments done in groups outside of class
- Final (30%)

ECE 481 Lab Sequence

- Hands-on experience testing and controlling GaN-based converter
- 3-lab sequence in modeling, open-loop control and analysis, and closed-loop control
- Completed in groups of 2-3 outside of normal lecture hours

Power Electronics Courses at UTK

Junior	Senior	Graduate		
ECE 325 Electric Energy System Components	ECE 481 Power Electronics	ECE 581 High Frequency Power Electronics	ECE 686 Solid State Power Semiconductors	ECE 692 DT Modeling of Power Electronics
ECE 335 Electronic Devices	ECE 482/582 Power Electronic Circuits	ECE 583 Modeling and Control of Drives	ECE 683 Advanced Power Electronics and Drives	ECE 682 Power Electronics Technologies
		ECE 585 Electric Vehicles	ECE 586 WBG Characterization	ECE 684 Power Electronics Packaging
		ECE 525 Alternative Energy Sources	ECE 625 Utility Applications of Power Electronics	

ECE 482: Power Electronics Circuits

Course Policy

- No late work will be accepted except in cases of documented medical emergency
- Collaboration encouraged on Labs and Homework
 - Must submit your own work on all assignments
 - Adhere to Student Code of Conduct
- Attendance is required in all lectures

How to Succeed in ECE 481

- Attend all lectures
 - Participate; ask questions or ask for clarification
- Read textbook for additional explanation
- Complete all homework assignments
 - Attempt homework alone prior to collaborating
 - Review and understand mistakes

Introduction to Power Conversion

COURSE CONTENT INTRODUCTION

Introduction to Power Conversion

Dc-dc conversion:Change and control voltage magnitudeAc-dc rectification:Possibly control dc voltage, ac currentDc-ac inversion:Produce sinusoid of controllable
magnitude and frequency

Ac-ac cycloconversion: Change and control voltage magnitude and frequency

Example Server Power Distribution

Example VRM Design

Example VRM Design

Example VRM Design

Variations in Load

Control is Invariably Required

Linear Regulator

Linear Regulator

A High Efficiency Converter

A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency

Devices Available to the Circuit Designer

Devices Available to the Circuit Designer

Signal processing: avoid magnetics

Devices Available to the Circuit Designer

Power processing: avoid lossy elements

Power Loss in an Ideal Switch

Use of SPDT Switch

Controlling Duty Cycle

DC component of $v_s(t)$ = average value:

$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) \, dt = DV_g$$

Addition of Low Pass Filter

Addition of (ideally lossless) *L*-*C* low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency f_0 much smaller than switching frequency f_s
- This circuit is known as the "buck converter"

Duty Cycle Control

Control System for Voltage Regulation

Dynamic Performance

Single Phase Inverter

"H-bridge"

Modulate switch duty cycles to obtain sinusoidal low-frequency component

Power Electronics Overview

Part I: Converters in Equilibrium

- 2. Principles of steady state converter analysis
- 3. Steady-state equivalent circuit modeling, losses, and efficiency

27

- 4. Switch realization
- 5. The discontinuous conduction mode
- 6. Converter circuits

Fundamentals of Power Electronics

Chapter 1: Introduction

Part I: Converters in Equilibrium

Switch Realization: Semiconductor Devices

Part II: Converter Dynamics and Control

- 7. Ac modeling
- 8. Converter transfer functions
- 9. Controller design

Part II: Converter Dynamics and Control

TENNESSEE KNOXVILLE

Part III: Magnetics

- 10. Basic Magnetics Theory
- 11. Inductor Design
- 12. Transformer Design

Part III: Magnetics

Power Electronics Research Applications

EV Battery Chargers

6.6kW charger (GaN vs SiC)

20kW V2L Charger

6.6kW charger (GaN vs Si)

20kW SiC charger

11kW charger (Si IGBT)

48V/11kW charger

Wireless Power Transfer

Cryogenically-Cooled 1 MW Ultralight Inverter

□ Partners

➢ NASA, Boeing

Technical Objectives

- ➢ 99.3% efficiency
- > 26 kW/kg specific power
- Inverter technologies to be scalable and reliable
- Cooled at -200°C with LN₂
- Input DC voltage level of 1000 V and AC output frequency range of 200-3000 Hz
- ➤Meet stringent PQ and EMI requirements

□ Faculty

≻F. Wang, L. Tolbert, B. Blalock, D. Costinett, K. Bai

1 MW prototype with LN₂ cooling

High Current Battery Charger Integrated Circuits

Project Objectives

- Increase continuous charging power of monolithic solution to 40W (2x increase over existing parts)
- Develop integrated charging and balancing for multi-cell packs

Achievements

- Optimized novel hybrid switched capacitor topology for highcurrent charging
- Demonstrated 40W charging using silicon integrated circuit
- Demonstrated new topology with independent control of charging and balancing currents for multi-cell packs

Co-packaged high-current chargers

G. Gabian, J. Gamble, B. Blalock and D. Costinett, "Hybrid buck converter optimization and comparison for smart phone integrated battery chargers," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018

Medical Devices: RF Energy Harvesting

pp.1397,1409, June 2013 Paing, T.; Falkenstein, Erez; Zane, R.; Popovic, Z., "Custom IC for Ultralow Power RF Energy Scavenging," *Power Electronics, IEEE Transactions on*, vol.26, no.6,

pp.1620,1626, June 2011

Grid Emulation with Power Electronics Hardware Testbed

North American CURENT system with WECC, EI, and ERCOT systems connected via multi-terminal HVDC overlay, and high penetration (>80%) of renewable energy sources

Power Transmission: Saturable Reactor

