
Small Signal Modeling: Linearization

$$f(x,y,z) \approx f(x_0,y_0,z_0) + \frac{\partial f}{\partial x}$$

Notation

$$(x-x_0) \longrightarrow \hat{x}$$

 $|x-x_0| \longrightarrow \hat{x}$
 $|x-x_0| \longrightarrow \hat{x}$

(1) Perturb and Linearize

$$9(+) \rightarrow P_1 - 9$$

(1) Perturb and Linearize
$$\begin{bmatrix}
\frac{d\langle i \rangle}{dt} - \langle v_g \rangle - \frac{d'(i)\langle v \rangle}{(i-bl)^2} \\
\frac{d\langle i \rangle}{dt} - \langle v_g \rangle - \frac{d'(i)\langle v \rangle}{(i-bl)^2}
\end{bmatrix}$$
(1) Replace all time-varying terms (2x) & $d(i)$) with DC + smell signal
$$\begin{cases}
\frac{d\langle i \rangle}{dt} - \langle v_g \rangle - \frac{d'(i)\langle v \rangle}{dt}
\end{cases}$$
(2) Neglect higher order terms \Rightarrow canothing with a product of two small signal unhables \Rightarrow separate \Rightarrow AC equations
$$\frac{d}{dt} \left(I_L + \hat{i}_L \right) = V_g + \hat{v}_g - \left(I - D - \hat{d} \right) \left(V + \hat{v} \right)$$

$$\frac{d}{dt} \left(I_L + \hat{i}_L \right) = V_g + \hat{v}_g - \frac{d}{dt} \left(I_L - \frac{d}{dt} \right) \left(V + \hat{v} \right)$$

$$\frac{d}{dt} \left(I_L + \hat{i}_L \right) = V_g + \hat{v}_g - \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v} \right) + \frac{d}{dt} \left(V + \frac{d}{dt} \right)$$

$$\frac{d}{dt} \left(I_L + \hat{i}_L \right) = V_g + \hat{v}_g - D'V + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v} \right) + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - \hat{v}_g \right)$$

$$\frac{d}{dt} \left(I_L + \hat{i}_L \right) = V_g + \hat{v}_g - D'V + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v} \right)$$

$$\frac{d}{dt} \left(I_L + \hat{v}_L \right) = V_g + \hat{v}_g - D'V + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v} \right)$$

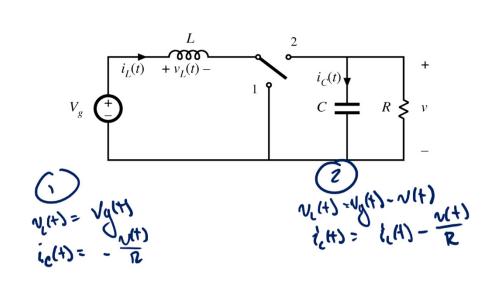
$$\frac{d}{dt} \left(I_L + \hat{v}_L \right) = V_g + \hat{v}_g - D'V + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v}_g + \hat{d} V - D'\hat{v}_g + \hat{d} V \right)$$

$$\frac{d}{dt} \left(I_L + \hat{v}_L \right) = V_g + \hat{v}_g - D'V + \frac{d}{dt} \left(V + \hat{v}_g + \hat{d} V - D'\hat{v}_g + \hat{d} V - D'\hat{v}_g + \hat{d} V \right)$$

$$\frac{d}{dt} \left(I_L + \hat{v}_L \right) = V_g + \hat{d} V - \hat{v}_g + \hat{d} V \right)$$

$$\frac{d}{dt} \left(I_L + \hat{v}_L \right) = V_g + \hat{v}_g + \hat{d} V - \hat{v}_g +$$

(2) 1st order Taylor Series Expansion


$$\frac{d\hat{u}}{dt} = \frac{\nabla y_{3} - d'(t)}{\int (y_{3}, d, v)}$$

$$\frac{d\hat{u}}{dt} = \frac{\partial f}{\partial v_{3}} \hat{v}_{3} + \frac{\partial f}{\partial v_{3}} \hat{u}_{4} + \frac{\partial f}{\partial v_{3}} \hat{v}_{4}$$

$$\frac{d\hat{u}}{dt} = \frac{\partial f}{\partial v_{3}} \hat{v}_{3} + \sqrt{\hat{u}_{3}} + \sqrt{\hat{u}_{3}} + \sqrt{\hat{u}_{3}}$$

$$\frac{d\hat{u}}{dt} = 1 \cdot \hat{v}_{3} + \sqrt{\hat{u}_{3}} - \hat{u}_{3}^{\dagger} \hat{v}_{4}$$

Equivalent Circuit Modeling: Boost Example

Average
$$\langle N_L \rangle = L \frac{d\langle i_L \rangle}{dt} = \langle V_g \rangle \frac{d'(t)}{dt} \langle N \rangle$$

 $\langle i_C \rangle = C \frac{d\langle N \rangle}{dt} = d'(t) \langle i_L \rangle - \frac{\langle N \rangle}{R}$

Process:

Solve converter equations for all NL; lei 3 (if necessary) ig (t) in each subinterval

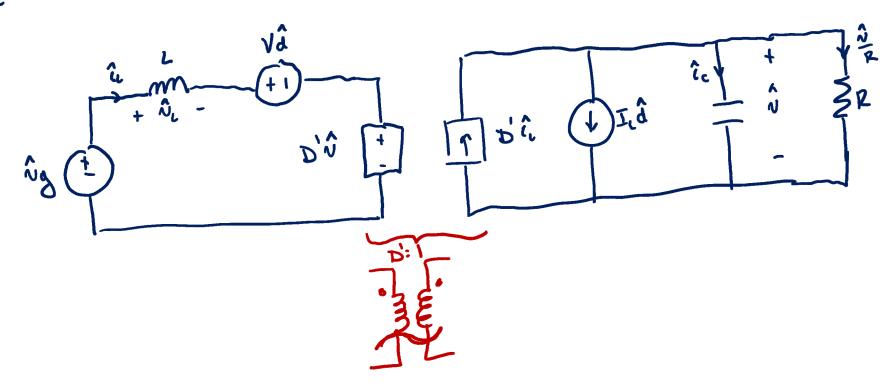
- (a) Average over one switching period

 (work assuming / enforcing stoody. stole)

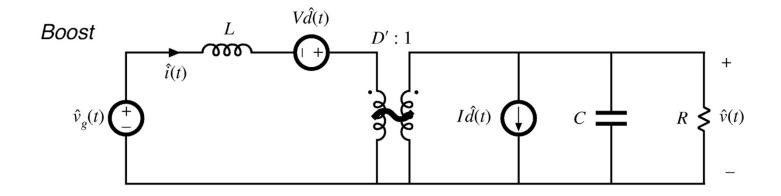
 Averaged, nonlinear circuit
 - 2) Linearite all equations by Starters to Taylor Sovies

 Averaged, Inearized equations
 - (3) Shelph & solve ac-equivalent averaged curcuit

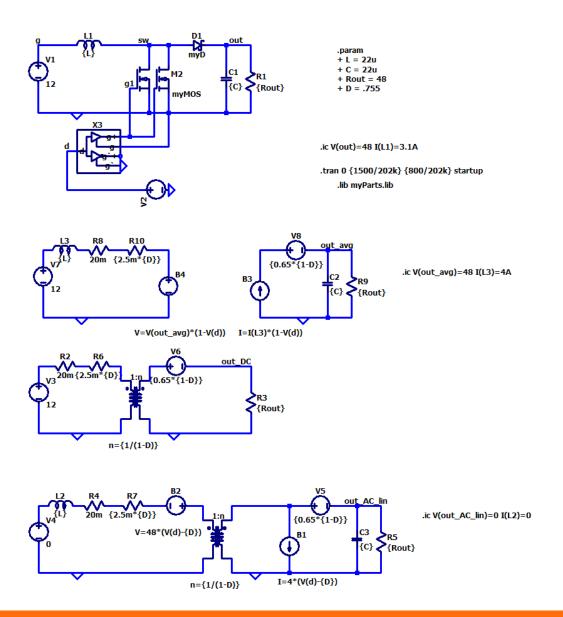
Linearization


Cap-charge balance:
$$\frac{d\langle u\rangle}{c} = \frac{d'(1)\langle i_L\rangle}{R}$$

$$\frac{d\hat{v}}{c} = \frac{\partial \hat{v}}{\partial t} - I_L \hat{d} - \frac{\hat{v}}{R}$$

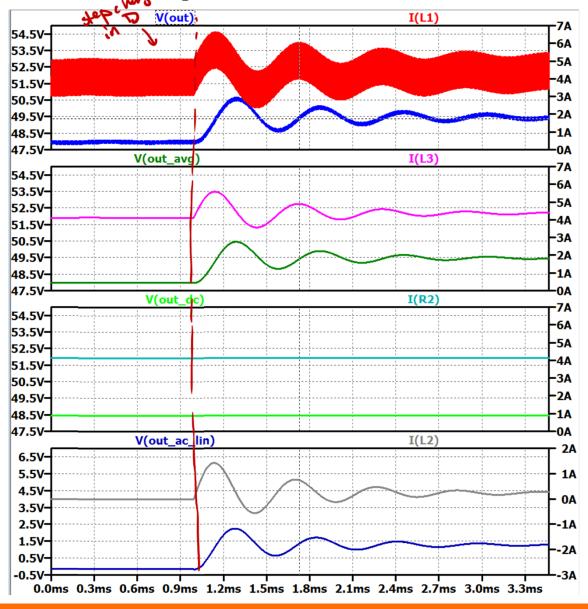

Equivalent Circuit Model

$$\hat{N}_{L} = L \frac{d\hat{u}_{L}}{dt} = \hat{N}_{Q} - \hat{D}\hat{v} + \hat{V}\hat{a}$$


$$\hat{l}_e = C \frac{d\hat{v}}{dt} = D'\hat{i}_L - \bar{l}_L \hat{d} - \frac{\hat{v}}{R}$$

Boost Converter Averaged, AC, Linear Circuit Model

Model Simulation

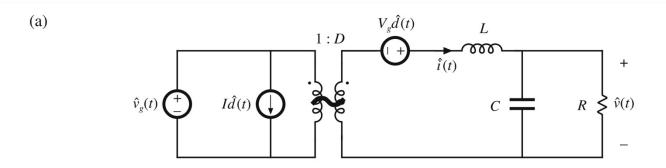


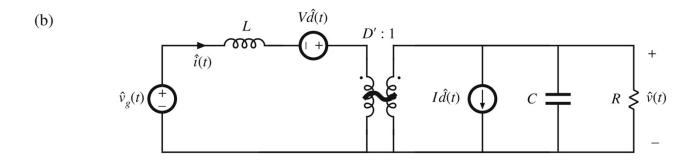
Full Switching Model

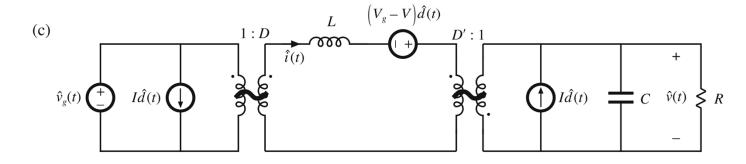
Averaged, Nonlinear

DC Averaged Model

AC Averaged, Linearized Model **Model Comparison**




Full Switching Model


Averaged, Nonlinear

DC Averaged Model

AC Averaged, Linearized Model

Fig. 7.18 Averaged small-signal ac models for several basic converters operating in continuous conduction mode: (a) buck, (b) boost, (c) buck-boost