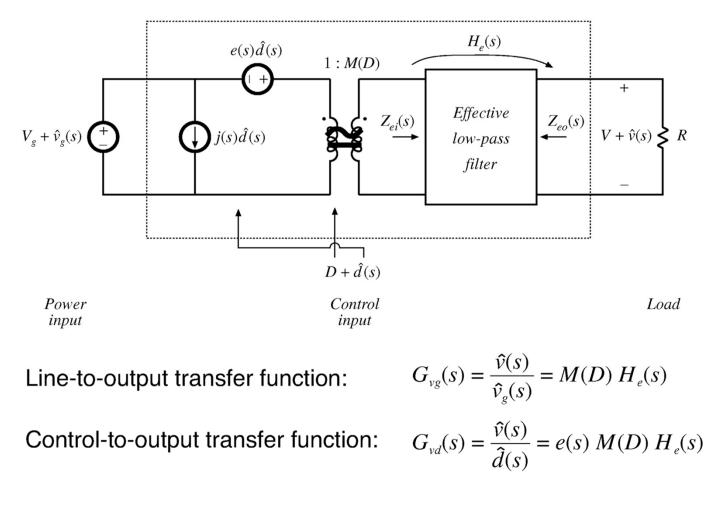
Section 7.4

CANONICAL CIRCUIT MODEL

Canonical Circuit Model



133

Chapter 7: AC equivalent circuit modeling

Canonical Form of Basic Converters

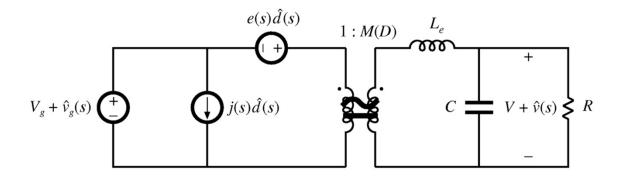


Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters

M(D)	L_e	e(s)	j(s)
D	L	$\frac{V}{D^2}$	$\frac{V}{R}$
$\frac{1}{D'}$	$\frac{L}{D'^2}$	$V\left(1-\frac{sL}{D^{\prime 2}R}\right)$	$\frac{V}{D'^2 R}$
$-\frac{D}{D'}$	$\frac{L}{D'}^2$	$-\frac{V}{D^2}\left(1-\frac{sDL}{D^{\prime^2}R}\right)$	$-\frac{V}{D^{\prime^2}R}$
	1	$\frac{1}{D'} \qquad \frac{L}{D'^2}$ $-\frac{D}{D} \qquad \frac{L}{D}$	$\frac{1}{D'} \qquad \frac{L}{D'^2} \qquad V\left(1 - \frac{sL}{D'^2R}\right)$

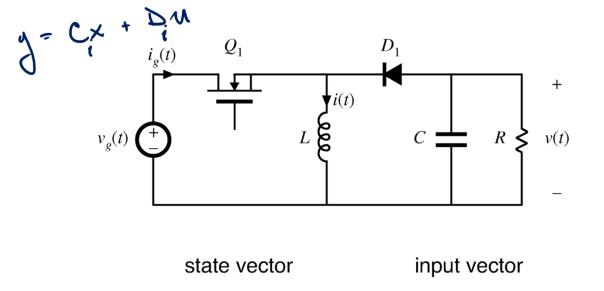
Section 7.5

STATE SPACE AVERAGING

7.3: State Space Modeling of Buck Boost

it 1.2

 $\frac{\partial x}{\partial t} = \dot{x} = A_i x + B_i u$



i(t)

v(t)

Model nonidealities:

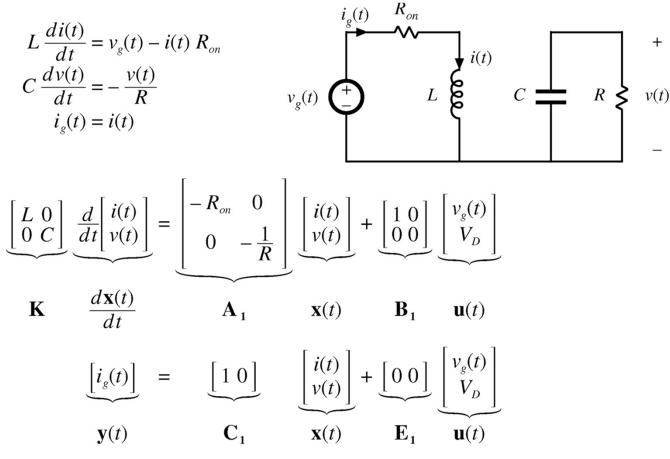
- MOSFET onresistance R_{on}
- Diode forward voltage drop V_D

input vector output vector $\mathbf{u}(t) = \begin{bmatrix} v_g(t) \\ V_D \end{bmatrix} \qquad \mathbf{y}(t) = \begin{bmatrix} i_g(t) \end{bmatrix}$

Fundamentals of Power Electronics

 $\mathbf{x}(t) =$

Model in Subinterval 1



Chapter 7: AC equivalent circuit modeling

State Space Model

Given: a PWM converter, operating in continuous conduction mode, with two subintervals during each switching period.

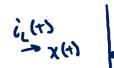
During subinterval 1, when the switches are in position 1, the converter reduces to a linear circuit that can be described by the following state equations:

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{B}_1 \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_1 \mathbf{x}(t) + \mathbf{E}_1 \mathbf{u}(t)$$

During subinterval 2, when the switches are in position 2, the converter reduces to another linear circuit, that can be described by the following state equations:

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_2 \mathbf{x}(t) + \mathbf{B}_2 \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_2 \mathbf{x}(t) + \mathbf{E}_2 \mathbf{u}(t)$$

State Space Averaging



The averaged (nonlinear) state equations:

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \left(d(t) \mathbf{A}_1 + d'(t) \mathbf{A}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(d(t) \mathbf{B}_1 + d'(t) \mathbf{B}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s} \\ \left\langle \mathbf{y}(t) \right\rangle_{T_s} = \left(d(t) \mathbf{C}_1 + d'(t) \mathbf{C}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(d(t) \mathbf{E}_1 + d'(t) \mathbf{E}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s}$$

The converter operates in equilibrium when the derivatives of all elements of $\langle \mathbf{x}(t) \rangle_{T_s}$ are zero. Hence, the converter quiescent operating point is the solution of

0 = A X + B UY = C X + E U

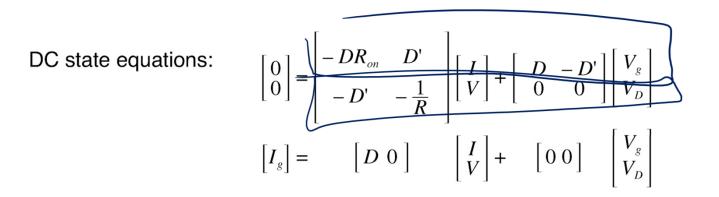
where $\mathbf{A} = D \mathbf{A}_1 + D' \mathbf{A}_2$ and $\mathbf{X} = equilibrium (dc) state vector$ $\mathbf{B} = D \mathbf{B}_1 + D' \mathbf{B}_2$ $\mathbf{U} = equilibrium (dc) input vector$ $\mathbf{C} = D \mathbf{C}_1 + D' \mathbf{C}_2$ $\mathbf{Y} = equilibrium (dc) output vector$ $\mathbf{E} = D \mathbf{E}_1 + D' \mathbf{E}_2$ D = equilibrium (dc) duty cycle

85

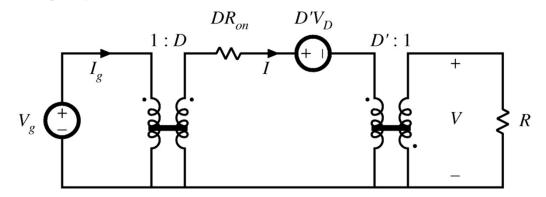
Fundamentals of Power Electronics

Chapter 7: AC equivalent circuit modeling

DC Solution



Corresponding equivalent circuit:



94

Linearization of Averaged State Space Equations

Let
$$\langle \mathbf{x}(t) \rangle_{T_s} = \mathbf{X} + \hat{\mathbf{x}}(t)$$
 with $\|\mathbf{U}\| \gg \|\hat{\mathbf{u}}(t)\|$
 $\langle \mathbf{u}(t) \rangle_{T_s} = \mathbf{U} + \hat{\mathbf{u}}(t)$ $D \gg |\hat{d}(t)|$
 $\langle \mathbf{y}(t) \rangle_{T_s} = \mathbf{Y} + \hat{\mathbf{y}}(t)$ $\|\mathbf{X}\| \gg \|\hat{\mathbf{x}}(t)\|$
 $d(t) = D + \hat{d}(t) \Rightarrow d'(t) = D' - \hat{d}(t)$ $\|\mathbf{Y}\| \gg \|\hat{\mathbf{y}}(t)\|$

Substitute into averaged state equations:

$$\mathbf{K} \frac{d(\mathbf{X} + \hat{\mathbf{x}}(t))}{dt} = \left(\left(D + \hat{d}(t) \right) \mathbf{A}_{1} + \left(D' - \hat{d}(t) \right) \mathbf{A}_{2} \right) \left(\mathbf{X} + \hat{\mathbf{x}}(t) \right) \\ + \left(\left(D + \hat{d}(t) \right) \mathbf{B}_{1} + \left(D' - \hat{d}(t) \right) \mathbf{B}_{2} \right) \left(\mathbf{U} + \hat{\mathbf{u}}(t) \right)$$

$$\begin{pmatrix} \mathbf{Y} + \hat{\mathbf{y}}(t) \end{pmatrix} = \left(\left(D + \hat{d}(t) \right) \mathbf{C}_1 + \left(D' - \hat{d}(t) \right) \mathbf{C}_2 \right) \left(\mathbf{X} + \hat{\mathbf{x}}(t) \right)$$
$$+ \left(\left(D + \hat{d}(t) \right) \mathbf{E}_1 + \left(D' - \hat{d}(t) \right) \mathbf{E}_2 \right) \left(\mathbf{U} + \hat{\mathbf{u}}(t) \right)$$

Fundamentals of Power Electronics

Chapter 7: AC equivalent circuit modeling

AC Solution

Evaluate matrices in small-signal model:

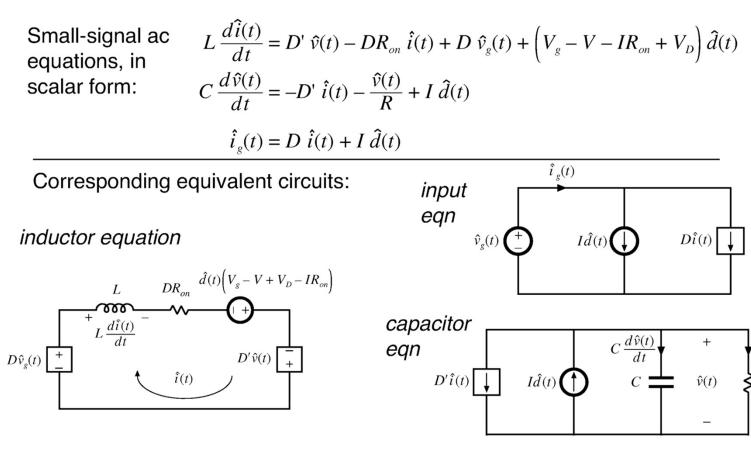
$$\begin{pmatrix} \mathbf{A}_1 - \mathbf{A}_2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \mathbf{B}_1 - \mathbf{B}_2 \end{pmatrix} \mathbf{U} = \begin{bmatrix} -V\\I \end{bmatrix} + \begin{bmatrix} V_g - IR_{on} + V_D\\0 \end{bmatrix} = \begin{bmatrix} V_g - V - IR_{on} + V_D\\I \end{bmatrix}$$
$$\begin{pmatrix} \mathbf{C}_1 - \mathbf{C}_2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \mathbf{E}_1 - \mathbf{E}_2 \end{pmatrix} \mathbf{U} = \begin{bmatrix} I \end{bmatrix}$$

Small-signal ac state equations:

$$\begin{bmatrix} L & 0 \\ 0 & C \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \hat{i}(t) \\ \hat{v}(t) \end{bmatrix} = \begin{bmatrix} -DR_{on} & D' \\ -D' & -\frac{1}{R} \end{bmatrix} \begin{bmatrix} \hat{i}(t) \\ \hat{v}(t) \end{bmatrix} + \begin{bmatrix} D & -D' \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{v}_g(t) \\ \hat{v}_D(t) \end{bmatrix} + \begin{bmatrix} V_g - V - IR_{on} + V_D \\ I \end{bmatrix} \hat{d}(t)$$
$$\begin{bmatrix} \hat{i}_g(t) \end{bmatrix} = \begin{bmatrix} D & 0 \end{bmatrix} \begin{bmatrix} \hat{i}(t) \\ \hat{v}(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{v}_g(t) \\ \hat{v}_D(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \hat{d}(t)$$

95

Resulting AC Equations



96

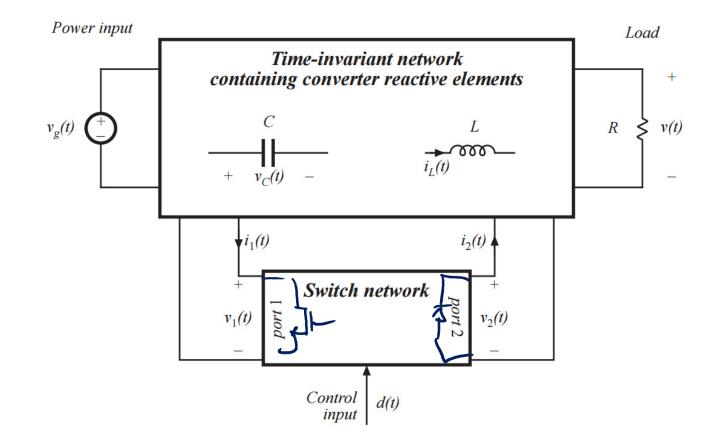
 $\frac{\hat{v}(t)}{R}$

R

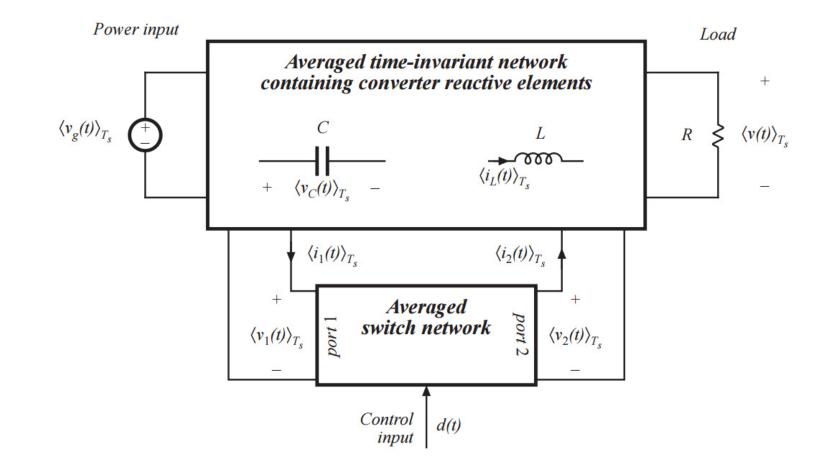
Section 14.1

AVERAGE SWITCH MODELING

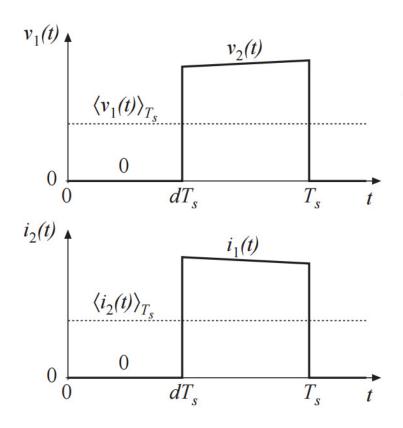
Removing Switch Network

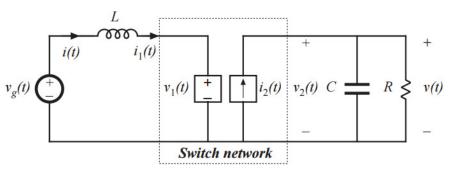


Averaged Switch Network



Definition of Equivalent Sources



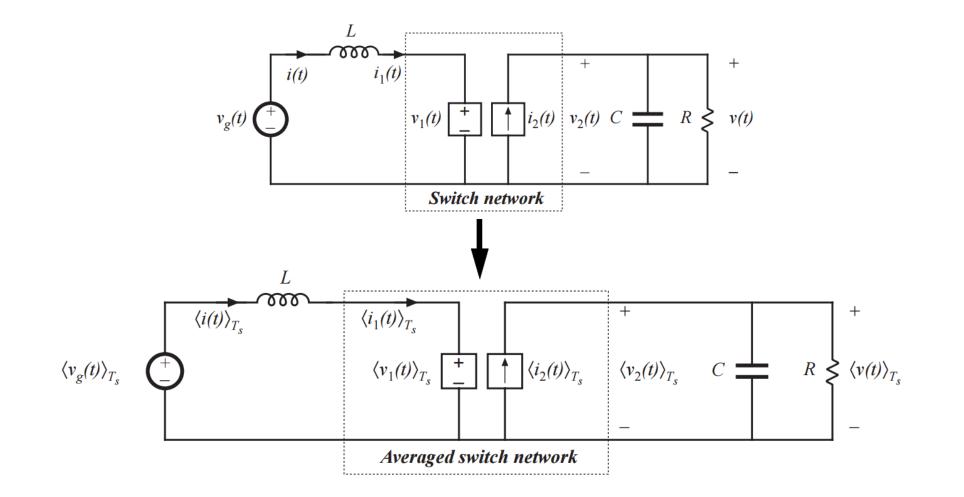


The waveforms of the dependent generators are defined to be identical to the actual terminal waveforms of the switch network.

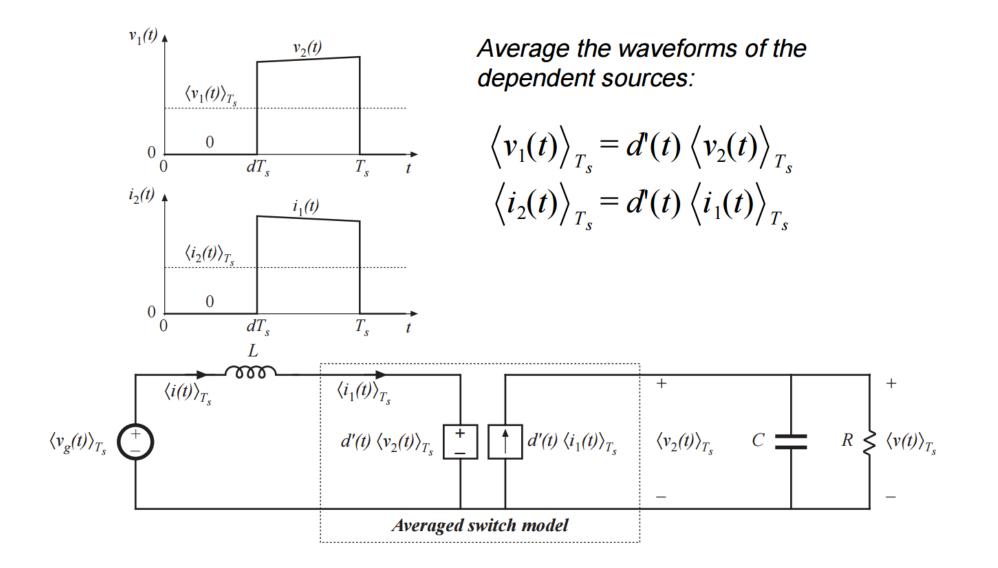
The circuit is therefore electrical identical to the original converter.

So far, no approximations have been made.

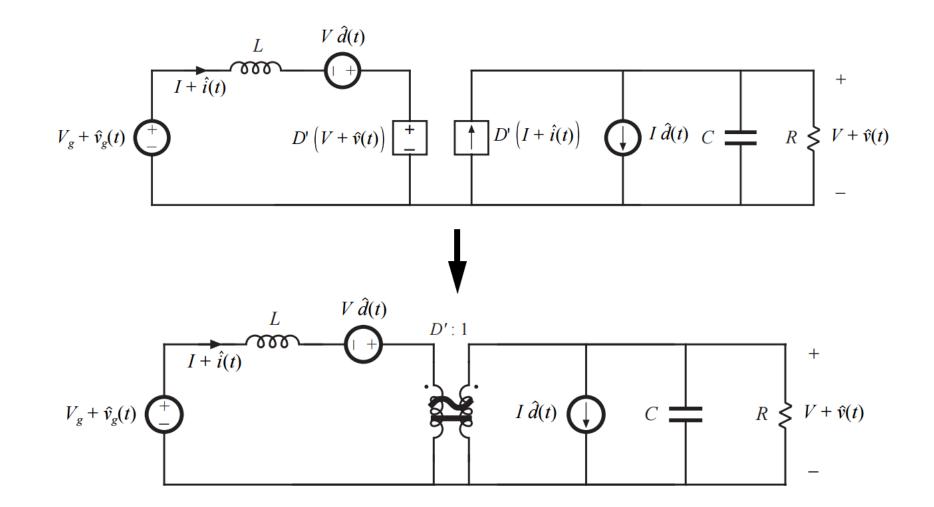
Switch Averaging



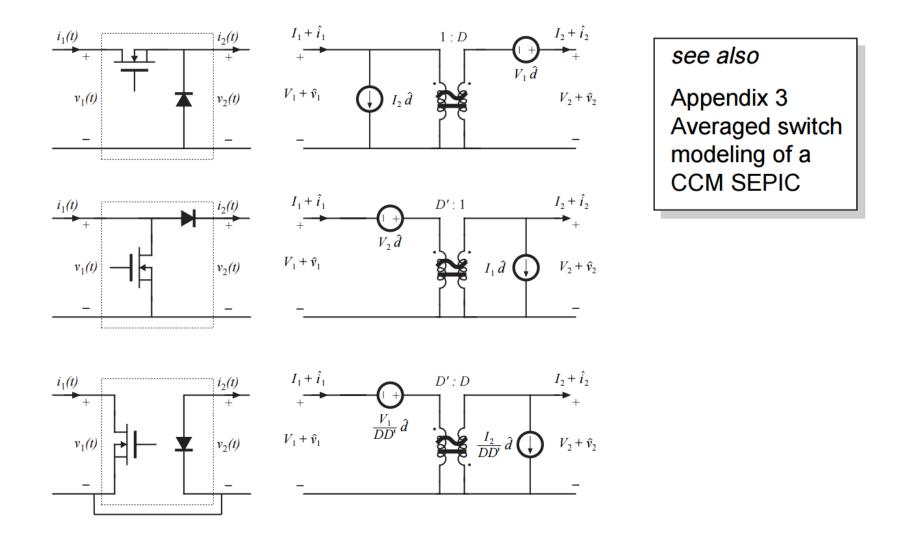
Computation of Average Values



Linearization of Model



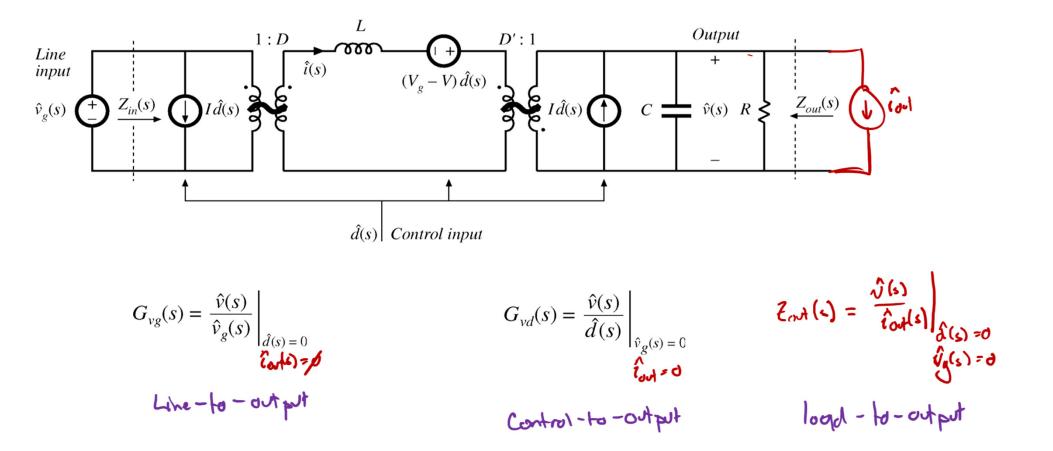
Averaged Switch Cells



CONVERTER TRANSFER FUNCTIONS

Chapter 8

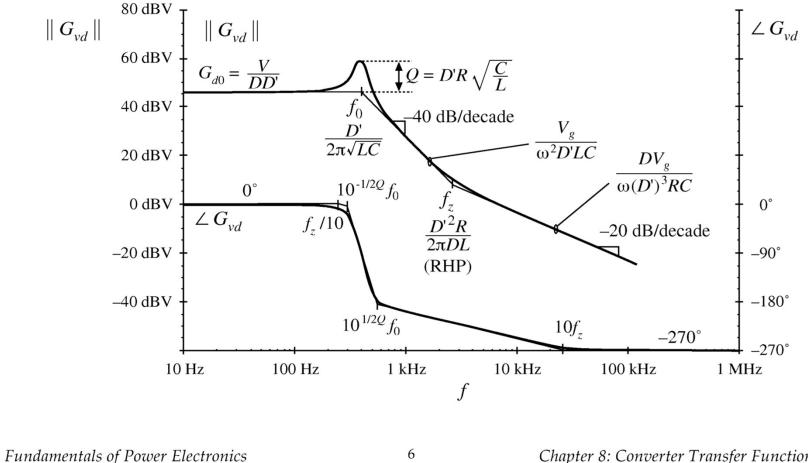
Buck Boost Model



Buck-Boost Control-to-Output TF $1: D \qquad L \rightarrow SL$ $(V_g - V)\hat{d}(s)$ D' $\oint I \hat{d}(s) \stackrel{\perp}{=} C^{\hat{v}}(s) \stackrel{\perp}{\leq} R \quad \bigotimes$ $I\hat{d}(s)$ Solve $G_{1,1}(s) = \frac{\widehat{U}(s)}{\widehat{U}(s)} |_{\widehat{U}_{1}(s)} = 0$ $$\begin{split} \tilde{c}_{ofl}(s) &= (V_{a} - V) \hat{d}(s) \frac{P[l]z}{P[l]z} + Sl_{a}}{P[l]z} + I \hat{d}(s) \left(P[l] \frac{1}{Sc} |l| \frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \hat{d}(s) \frac{P[l]z}{P[l]z} + Sl_{a}}{P[l]z} + I \hat{d}(s) \left(P[l] \frac{1}{Sc} |l| \frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right) \left(\frac{SL}{D^{2}} \right) \\ \tilde{c}_{s}(s) &= (V_{a} - V) \frac{P[l]z}{P[l]z} + SCP \left(\frac{1+scP}{P} \right) + I \left(\frac{1}{\frac{1}{2}} + SC + \frac{D^{12}}{SL} \right)$$ $(4val(s) = (V_{y}-V) + \frac{1}{1+\frac{sL}{D^{2}R} + s^{2}\frac{LC}{D^{2}}} + \frac{T}{1+\frac{sL}{D^{2}R} + s^{2}\frac{LC}{D^{2}}} + \frac{T}{1+\frac{sL}{D^{2}R} + s^{2}\frac{LC}{D^{2}}}$

Buck-Boost Control-to-Output TF $G_{VA}(s) = \frac{-(V_{DV} - V)}{1 + \frac{SL}{D^{2}R}} + \frac{S^{2}}{S^{2}}$ $\int G_{VA}(s) = \left(-\frac{V_{DV} - V}{D^{2}}\right) \frac{1 - sL \frac{T}{D^{2}R}}{1 + \frac{SL}{D^{2}R}} + \frac{S^{2}LC}{D^{2}}$

Control-to-output Transfer Function



Chapter 8: Converter Transfer Functions