9.5 – Compensator Design

Design Approach

- Assume $G_c(s) = 1$, and plot the resulting uncompensated loop gain $T_u(s)$
- Examine uncompensated loop gain to determine the needs of the compensator
 - Is low-frequency loop gain amplitude ||T(0)|| large enough to result in **low steady-state error**?
 - Is φ_m sufficient for stability and requirements **on ringing/overshoot**?
 - Is f_c high enough for a sufficiently **fast response**?
- Construct compensator to address shortcomings of $T_u(s)$
 - Use "toolbox" of compensators

Example: Uncompensated Loop Gain

Proportional (P) Compensator

Stabilization by (P) Compensator

Another Example

Integral (I) Compensator

Stabilization by (I) Compensator

Lag (PI) Compensator

TENNESSEE KNOXVILLE

Lead (PD) Compensator

Maximum Phase Lead

Example Lead Compensator Design

Combined (PID) Compensator

Example Design of Buck Compensator

$V_g = 28$ V
$V = 15$ V, $I_{load} = 5$ A, $R = 3\Omega$
D = 15/28 = 0.536
$V_{ref} = 5 \mathrm{V}$
$V_c = DV_M = 2.14$ V
$H = V_{ref} / V = 5/15 = 1/3$

