Example Design of Buck Compensator

$V_g = 28$ V
$V = 15$ V, $I_{load} = 5$ A, $R = 3\Omega$
D = 15/28 = 0.536
$V_{ref} = 5 \mathrm{V}$
$V_c = DV_M = 2.14$ V
$H = V_{ref} / V = 5/15 = 1/3$

Plotting Uncompensated Loop Gain

Fundamentals of Power Electronics

LTSpice Simulation – AC, Uncompensated

Transient Simulation, Uncompensated

.param Vg = 28 V = 15 R = 3 D = .536 .param Vref = 5 H = 1/3 Vm = 4 .param L = 50u C = 500u

.ic V(out) = 15 I(L1) = 5 V(vc) = {D*Vm}

Ringing Frequency

T/(1+*T*)

TENNESSEE T

Summary: Uncompensated Behavior

- Significant steady-state error
 - Need to increase low-frequency gain
- Barely stable; significant ringing
 - Need to increase ϕ_m
- Speed: ~ok
 - $-f_c = 1.8 \text{ kHz}$
 - $-(BW)_{CL} = 2.6 \text{ kHz}$
 - OK for $f_s \approx 10$ kHz or above

Compensator Design

- As an example, try to
 - Increase f_c to 10 kHz
 - Increase ϕ_m to 76° (Q_{CL} =0.5)
 - Increase $||T_0||$ to ∞
- Note: Book Chooses $f_c = 5$ kHz and $\phi_m = 52^\circ$ (Q=0.5)

PI Design

PI Simulation

PD Design

$$f_{z} = f_{c} \sqrt{\frac{1 - \sin(\theta)}{1 + \sin(\theta)}}$$
$$f_{p} = f_{c} \sqrt{\frac{1 + \sin(\theta)}{1 - \sin(\theta)}}$$

$$G_{c0} = \sqrt{\frac{f_z}{f_p}}$$

TENNESSEE T

T/(1+*T*)

Vg1

{Vg}

{1/Vm}

AC 1

VC

PULSE(0 .1 5.5m)

{C}

GC

Laplace=0.12*42.6*(1+6.28*50/(s+1))*(1+s/(6.28*1.23k)), (1+s/(6.28*81k))

V_ref1

ウ

Switching Simulation

Complete Compensator

Compensator Realization

