Part III: Magnetics

- Ch 10 Basic Magnetics Theory
- Ch 11 Inductor Design
- Ch 12 Transformer Design
 - Ch. 13-15 in 2nd edition

Some Inductor Examples air wre Litz wire

Example Power Converters

Basic Magnetics Relationships

Faraday's Law

Voltage v(t) is induced in a loop of wire by change in the total flux $\Phi(t)$ passing through the interior of the loop, according to

$$v(t) = \frac{d\Phi(t)}{dt}$$

For uniform flux distribution, $\Phi(t) = B(t)A_c$ and hence

Fundamentals of Power Electronics

Chapter 13: Basic Magnetics Theory

Lenz's Law

Right hard rule

The voltage v(t) induced by the changing flux $\Phi(t)$ is of the polarity that tends to drive a current through the loop to counteract the flux change.

Example: a shorted loop of wire

- Changing flux $\Phi(t)$ induces a voltage v(t) around the loop
- This voltage, divided by the impedance of the loop conductor, leads to current i(t)
- This current induces a flux $\Phi'(t)$, which tends to oppose changes in $\Phi(t)$

Ampere's Law

The net MMF around a closed path is equal to the total current passing through the interior of the path:

> II - It - total current passing through interior of path closed path

Example: magnetic core. Wire carrying current i(t) passes through core window.

- Illustrated path follows magnetic flux lines around interior of core
- For uniform magnetic field strength H(t), the integral (MMF) is $H(t)\ell_m$. So

$$\mathscr{F}(t) = H(t)\ell_m = i(t)$$

 $\mathscr{F}(t) = H(t)\ell_m = i(t)$

Fundamentals of Power Electronics

10

Chapter 13: Basic Magnetics Theory