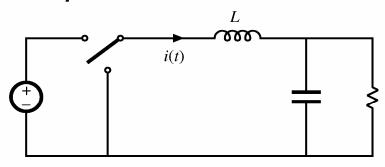
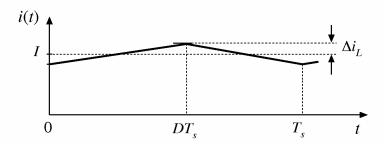

**DC Copper Loss** 

Copper Loss


$$\lim_{N \to \infty} \frac{1}{N} = \lim_{N \to \infty}$$


## Filter Inductor Design Constraints



### **Design Goals**

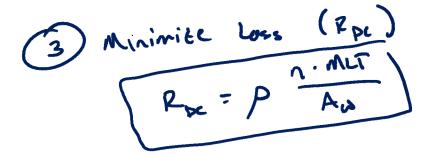
**Example**: filter inductor in CCM buck converter





Desired indetonce

L = Mon<sup>2</sup> Act


L = 1g

(Assuming Pkg 27 Pke)

Track = 12 Brown

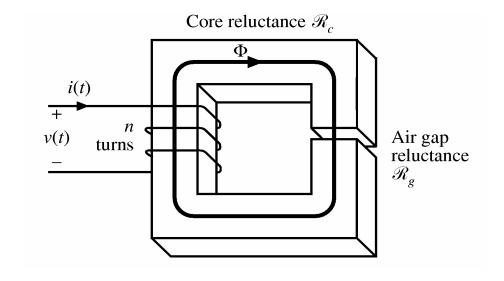
Brux L Boat by some mugin by e.g. 10-25%

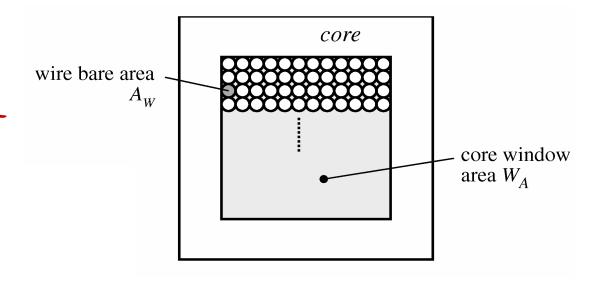
#### **Geometrical Parameters**



(4) Wires need to fit

n Aw & WA Ku


Afill factor


Aren

0 & Ku &

The perfect circle-to-square

The pe





# The $K_g$ Method

# $K_g$ Method

The following quantities are specified, using the units noted:

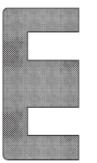
| Wire resistivity               | ρ         | $(\Omega$ -cm) |
|--------------------------------|-----------|----------------|
| Peak winding current           | $I_{max}$ | (A)            |
| Inductance                     | L         | (H)            |
| Winding resistance             | R         | $(\Omega)$     |
| Winding fill factor            | $K_u$     |                |
| Maximum operating flux density | $B_{max}$ | (T)            |

The core dimensions are expressed in cm:

Core cross-sectional area 
$$A_c$$
 (cm<sup>2</sup>)  
Core window area  $W_A$  (cm<sup>2</sup>)  
Mean length per turn  $MLT$  (cm)

$$K_g \ge \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u} 10^8$$
 (cm<sup>5</sup>)

$$\ell_g = \frac{\mu_0 L I_{max}^2}{B_{max}^2 A_c} 10^4$$
 (m)


$$n = \frac{LI_{max}}{B_{max}A_c} 10^4$$

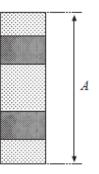
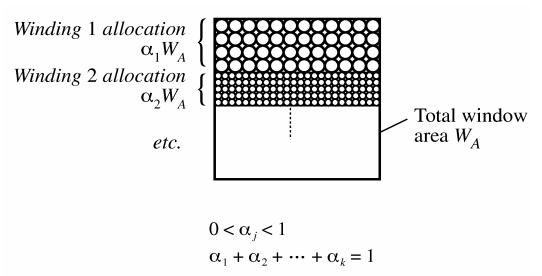
$$A_W \le \frac{K_u W_A}{n} \quad \text{(cm}^2)$$

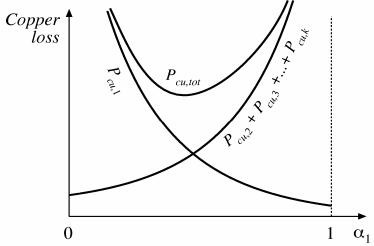
$$R = \frac{\rho n \ (MLT)}{A_w} \qquad (\Omega)$$

# **Appendix B**

#### D.2 EE CORE DATA





Fig. D.2

| Core<br>type | Geometrical<br>constant | Geometrical<br>constant | Cross-<br>sectional<br>area | Bobbin<br>winding<br>area | Mean<br>length<br>per turn | Magnetic<br>path<br>length | Core<br>weight |
|--------------|-------------------------|-------------------------|-----------------------------|---------------------------|----------------------------|----------------------------|----------------|
| (A)          | $K_{g}$                 | $K_{gfe}$               | $A_c$                       | $W_A$                     | MLT                        | $\ell_m$                   |                |
| (mm)         | (cm <sup>5</sup> )      | (cm <sup>x</sup> )      | (cm <sup>2</sup> )          | $(cm^2)$                  | (cm)                       | (cm)                       | (g)            |
| EE12         | 0.731-10-3              | 0.458-10-3              | 0.14                        | 0.085                     | 2.28                       | 2.7                        | 2.34           |
| EE16         | $2.02 \cdot 10^{-3}$    | $0.842 \cdot 10^{-3}$   | 0.19                        | 0.190                     | 3.40                       | 3.45                       | 3.29           |
| EE19         | $4.07 \cdot 10^{-3}$    | 1.3·10 <sup>-3</sup>    | 0.23                        | 0.284                     | 3.69                       | 3.94                       | 4.83           |
| EE22         | $8.26 \cdot 10^{-3}$    | 1.8·10 <sup>-3</sup>    | 0.41                        | 0.196                     | 3.99                       | 3.96                       | 8.81           |
| EE30         | 85.7·10 <sup>-3</sup>   | 6.7·10 <sup>-3</sup>    | 1.09                        | 0.476                     | 6.60                       | 5.77                       | 32.4           |
| EE40         | 0.209                   | 11.8·10-3               | 1.27                        | 1.10                      | 8.50                       | 7.70                       | 50.3           |
| EE50         | 0.909                   | $28.4 \cdot 10^{-3}$    | 2.26                        | 1.78                      | 10.0                       | 9.58                       | 116            |
| EE60         | 1.38                    | 36.4·10 <sup>-3</sup>   | 2.47                        | 2.89                      | 12.8                       | 11.0                       | 135            |
| EE70/68/19   | 5.06                    | 75.9·10 <sup>-3</sup>   | 3.24                        | 6.75                      | 14.0                       | 18.0                       | 280            |

| AWG# | Bare area,<br>10 <sup>-3</sup> cm <sup>2</sup> | Resistance,<br>10 <sup>-6</sup> Ω/cm | Diameter,<br>cm |
|------|------------------------------------------------|--------------------------------------|-----------------|
| 0000 | 1072.3                                         | 1.608                                | 1.168           |
| 000  | 850.3                                          | 2.027 1.040                          |                 |
| 00   | 674.2                                          | 2.557                                | 0.927           |
| 0    | 534.8                                          | 3.224                                | 0.825           |
| 1    | 424.1                                          | 4.065                                | 0.735           |
| 2    | 336.3                                          | 5.128                                | 0.654           |
| 3    | 266.7                                          | 6.463                                | 0.583           |
| 4    | 211.5                                          | 8.153                                | 0.519           |
| 5    | 167.7                                          | 10.28                                | 0.462           |
| 6    | 133.0                                          | 13.0                                 | 0.411           |
| 7    | 105.5                                          | 16.3                                 | 0.366           |
| 8    | 83.67                                          | 20.6                                 | 0.326           |
| 9    | 66.32                                          | 26.0                                 | 0.291           |
| 10   | 52.41                                          | 32.9                                 | 0.267           |
| 11   | 41.60                                          | 41.37                                | 0.238           |
| 12   | 33.08                                          | 52.09                                | 0.213           |
| 13   | 26.26                                          | 69.64                                | 0.190           |
| 14   | 20.02                                          | 82.80                                | 0.171           |
| 15   | 16.51                                          | 104.3                                | 0.153           |
| 16   | 13.07                                          | 131.8                                | 0.137           |
| 17   | 10.39                                          | 165.8                                | 0.122           |
| 18   | 8.228                                          | 209.5                                | 0.109           |
| 19   | 6.531                                          | 263.9                                | 0.0948          |
| 20   | 5.188                                          | 332.3                                | 0.0874          |
| 21   | 4.116                                          | 418.9                                | 0.0785          |
| 22   | 3.243                                          | 531.4                                | 0.0701          |
| 23   | 2.508                                          | 666.0                                | 0.0632          |
| 24   | 2.047                                          | 842.1                                | 0.0566          |
| 25   | 1.623                                          | 1062.0                               | 0.0505          |
| 26   | 1.280                                          | 1345.0                               | 0.0452          |
| 27   | 1.021                                          | 1687.6                               | 0.0409          |
| 28   | 0.8046                                         | 2142.7                               | 0.0366          |
| 29   | 0.6470                                         | 2664.3                               | 0.0330          |

# $K_q$ Method: Multi-Winding Magnetics





$$\alpha_m = \frac{V_m I_m}{\sum_{m=1}^{\infty} V_j I_j}$$

Apparent power in winding j is

$$V_jI_j$$

where

 $V_i$  is the rms or peak applied voltage

 $I_i$  is the rms current

Window area should be allocated according to the apparent powers of the windings