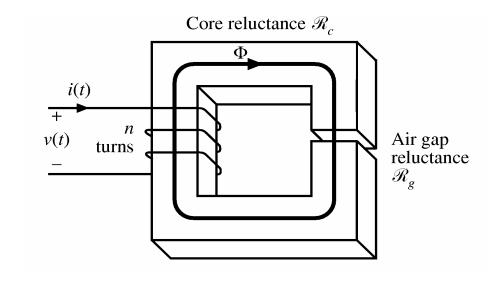
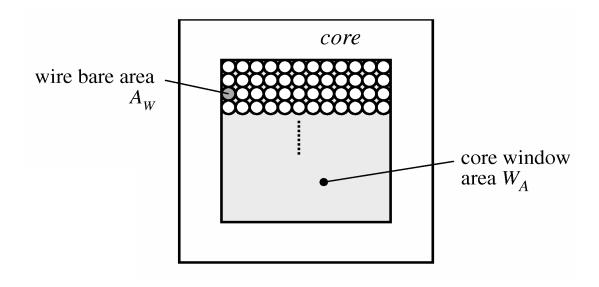

Filter Inductor Design Constraints


Design Goals


Example: filter inductor in CCM buck converter

Geometrical Parameters

The K_g Method

K_g Method

$$K_g \ge \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u} 10^8 \qquad \text{(cm}^5)$$

$$\ell_g = \frac{\mu_0 L I_{max}^2}{B_{max}^2 A_c} 10^4$$
 (m)

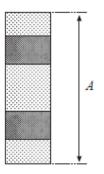
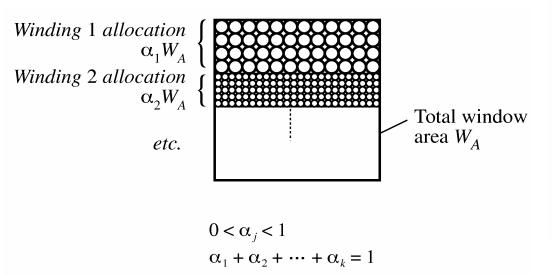
$$n = \frac{LI_{max}}{B_{max}A_c} 10^4$$

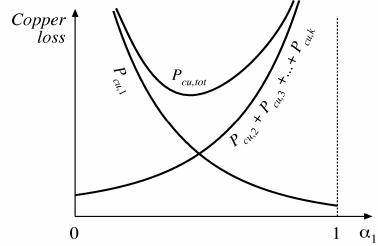
$$A_W \le \frac{K_u W_A}{n} \quad \text{(cm}^2)$$

$$R = \frac{\rho n \ (MLT)}{A_w} \qquad (\Omega)$$

Appendix B

D.2 EE CORE DATA


Fig. D.2

Core type	Geometrical constant	Geometrical constant	Cross- sectional area	Bobbin winding area	Mean length per turn	Magnetic path length	Core weight
(A)	K_{g}	$K_{\it gfe}$	A_c	W_A	MLT	ℓ_m	
(mm)	(cm ⁵)	(cm ^x)	(cm ²)	(cm ²)	(cm)	(cm)	(g)
EE12	0.731-10-3	0.458-10-3	0.14	0.085	2.28	2.7	2.34
EE16	$2.02 \cdot 10^{-3}$	$0.842 \cdot 10^{-3}$	0.19	0.190	3.40	3.45	3.29
EE19	$4.07 \cdot 10^{-3}$	1.3·10-3	0.23	0.284	3.69	3.94	4.83
EE22	8.26·10 ⁻³	1.8·10 ⁻³	0.41	0.196	3.99	3.96	8.81
EE30	85.7·10 ⁻³	6.7·10 ⁻³	1.09	0.476	6.60	5.77	32.4
EE40	0.209	11.8·10 ⁻³	1.27	1.10	8.50	7.70	50.3
EE50	0.909	28.4·10 ⁻³	2.26	1.78	10.0	9.58	116
EE60	1.38	36.4·10 ⁻³	2.47	2.89	12.8	11.0	135
EE70/68/19	5.06	75.9·10 ⁻³	3.24	6.75	14.0	18.0	280

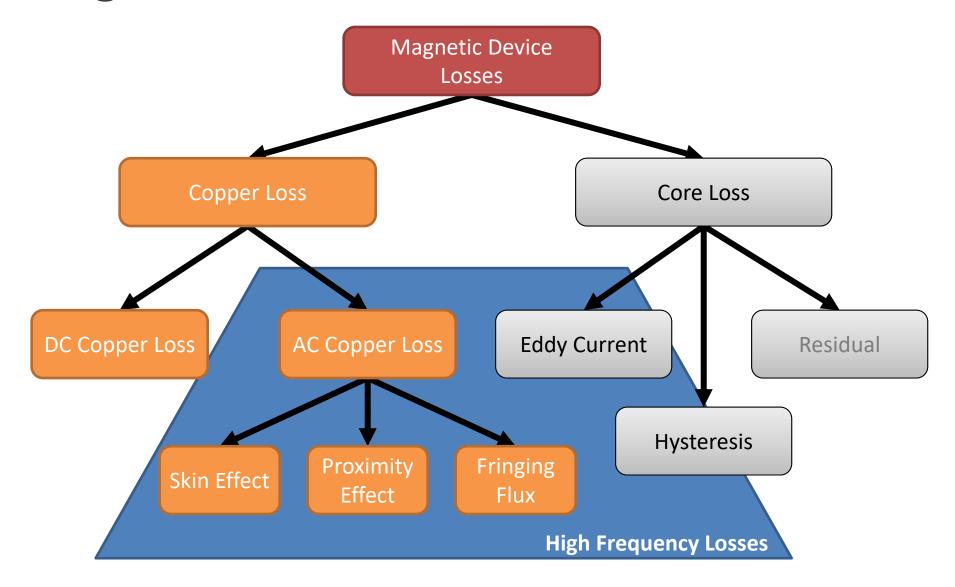
AWG#	Bare area, 10 ⁻³ cm ²	Resistance, 10 ⁻⁶ Ω/cm	Diameter, cm	
0000	1072.3	1.608	1.168	
000	850.3	2.027	1.040	
00	674.2	2.557	0.927	
	071.2	2.557	0.527	
0	534.8	3.224	0.825	
1	424.1	4.065	0.735	
2	336.3	5.128	0.654	
3	266.7	6.463	0.583	
4	211.5	8.153	0.519	
5	167.7	10.28	0.462	
6	133.0	13.0	0.411	
7	105.5	16.3	0.366	
8	83.67	20.6	0.326	
9	66.32	26.0	0.291	
	00.52	20.0	V.2.	
10	52.41	32.9	0.267	
11	41.60	41.37	0.238	
12	33.08	52.09	0.213	
13	26.26	69.64	0.190	
14	20.02	82.80	0.171	
15	16.51	104.3	0.153	
16	13.07	131.8	0.133	
17	10.39	165.8	0.137	
18	8.228	209.5	0.122	
19	6.531	263.9	0.0948	
19	0.551	203.9	0.0940	
20	5.188	332.3	0.0874	
21	4.116	418.9	0.0785	
22	3.243	531.4	0.0701	
23	2.508	666.0	0.0632	
24	2.047	842.1	0.0566	
25	1.623	1062.0	0.0505	
26	1.280	1345.0	0.0452	
27	1.021	1687.6	0.0409	
28	0.8046	2142.7	0.0366	
29	0.6470	2664.3	0.0330	

K_a Method: Multi-Winding Magnetics

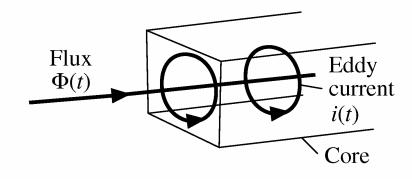
$$\alpha_m = \frac{V_m I_m}{\sum_{m=1}^{\infty} V_j I_j}$$

Apparent power in winding j is

$$V_jI_j$$

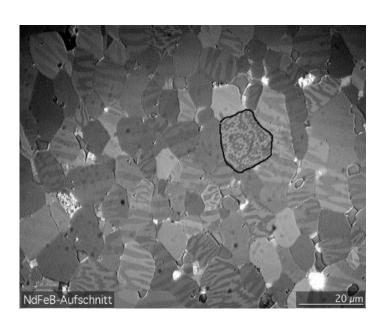

where

 V_i is the rms or peak applied voltage

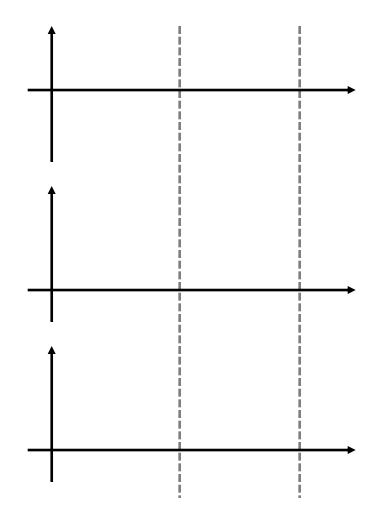

 I_i is the rms current

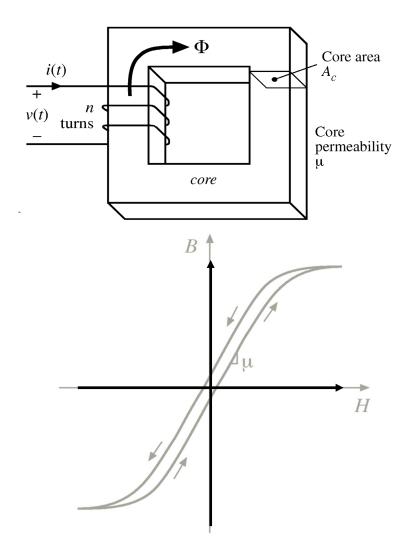
Window area should be allocated according to the apparent powers of the windings

13.3 Magnetics Losses

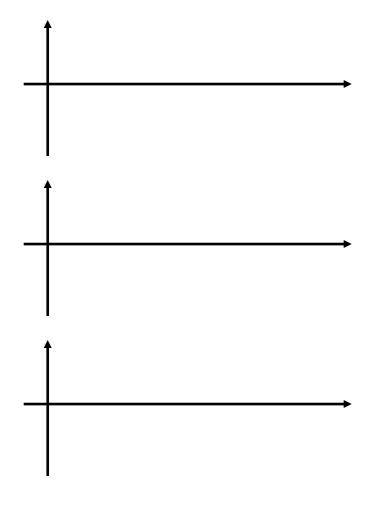


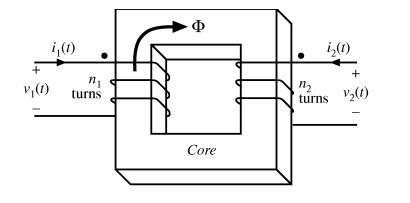
Eddy Currents in Magnetic Materials

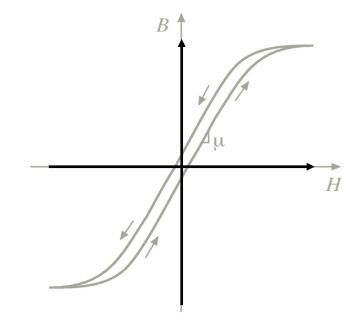


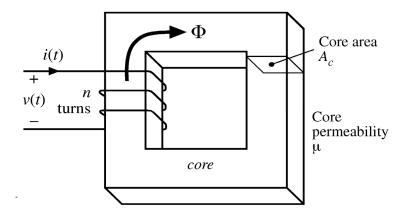

Core Loss

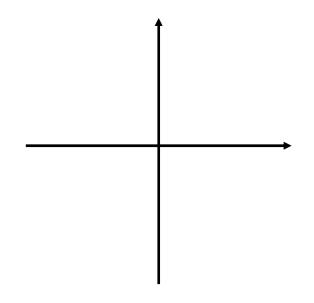
- Physical origin due to magnetic domains
- Modeling Approaches
 - Empirical (curve fit) models of materials
 - Direct measurement-based models
 - Physics-based models

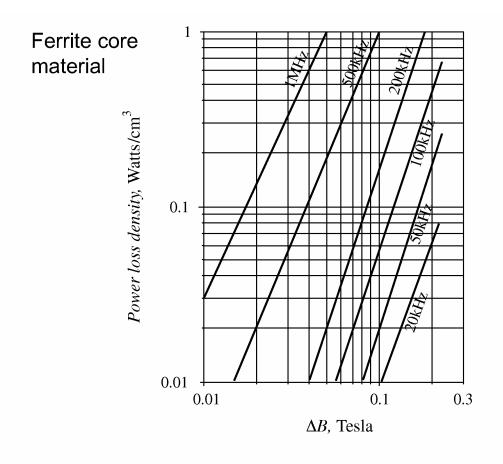



B-H Curve: Filter Inductor




B-H Curve: Transformer





Hysteresis Loss

The Steinmetz Equation

Empirical equation, at a fixed frequency:

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Alternately:

$$P_v = Km f^{\alpha} (\Delta B)^{\beta}$$

Fundamentals of Power Electronics

41

Chapter 13: Basic Magnetics Theory

Steinmetz Equation: Notes

- Purely empirical; not physics-based
- Parameters α , β , K vary with frequency
- Correct only for sinusoidal excitation
 - Nonlinear; Fourier expansion of waveforms cannot be used
- Modified empirical equations perform better with nonsinusoidal waveforms
 - MSE
 - GSE
 - iGSE
 - i²GSE