
Buck-Boost Converter with Nonideal Semiconductors

Equivalent Circuit Model $\phi = DV_0 - DV_1 - DV_2 - DV_3 - DV_4 - DV_5 - T_1 R_1$ $\phi = DV_0 - DV_1 - DV_2 - DV_5 - DV_5 - T_1 R_1$ $\phi = DV_0 - DV_1 - DV_2 - DV_5 - DV_5 - T_1 R_1$ 0 = - N - D'IL P.:1 1:D PL DRUN D'RD

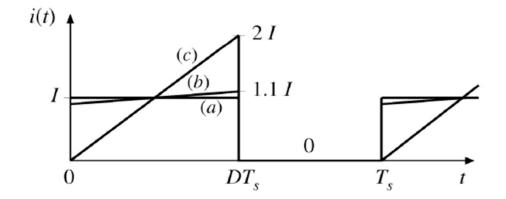
Circuit Solution

CIPCUIT SOLUTION

$$M = \frac{V}{Vg} = \frac{1}{D'} \left(D - \frac{D' V_D}{Vg} \right) \frac{D'^2 R}{D'^2 R + D R o n + D' R D + R L}$$

$$M = \left(\frac{-D}{D'} \right) \left(1 - \frac{D' V_D}{D'^2 R} \right) \frac{D'^2 R}{D'^2 R + D R o n + D' R D + R L}$$

$$\frac{D' V_D}{D V_Q} \longrightarrow \frac{V_D}{D' V_Q} \stackrel{\text{V}}{\sim} \frac{V_D}{V} \longrightarrow \frac{V_D}{V_D} \text{ dide } V_D$$
Alonge losses in dipole V_D are $\frac{1}{T_c} \int_0^{T_c} V_D \cdot \hat{I}_D dt = \frac{1}{T_c} V_D \int_0^{T_D} i_D dt = V_D \langle i_D \rangle |_{T_c} = V_D I_D$


Average Losses in a restance Rx are
$$\frac{1}{t_s}\int_0^{t_s} \sqrt{1_R} dt = \frac{1}{t_s}\int_0^{t_s} \left(1_R \cdot R\right) t_R dt = R \frac{1}{t_s}\int_0^{t_s} 1_R dt$$

But, we are using
$$P_{2} = T_{R,Dc} R$$

Average vs RMS Currents

- Model uses average currents and voltages
- To correctly predict power loss in a resistor, use rms values
- Result is the same, provided ripple is small

MOSFET current waveforms, for various ripple magnitudes:

		14000000			
_	Inductor current ripple	MOSFET rms current	Average power loss in R	on	
	(a) $\Delta i = 0$	I √ D	$D I^2 R_{on}$,	
	(b) $\Delta i = 0.1 I$	$(1.00167) I \sqrt{D}$	$(1.0033) D I^2 R_{on}$	0.3% ever in f	B 7
	(c) $\Delta i = I$	$(1.155)I\sqrt{D}$	$(1.3333) D I^2 R_{on}$	3390 ever in :	Pe

Chapter 4

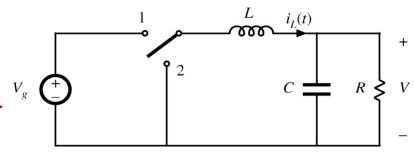
SWITCH REALIZATION

Implementing with SPST Switches

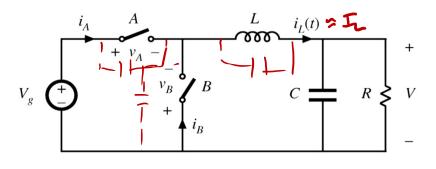
Step 1: Implement circuit w only SPST switches

Use passive Sign convention to look at each SPST switch

Now we have additional switching states possible V_8 \bigoplus A on, B off \longrightarrow \bigoplus With tw


Aoff, Boff -> dead time

Acr, Bon -> Very Bad


"shoot - through"

Buck converter

with SPDT switch:

with two SPST switches:

